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Abstract

A popular approach to decrease the need for
costly manual annotation of large data sets
is weak supervision, which introduces prob-
lems of noisy labels, coverage and bias. Meth-
ods for overcoming these problems have ei-
ther relied on discriminative models, trained
with cost functions specific to weak supervi-
sion, and more recently, generative models,
trying to model the output of the automatic
annotation process. In this work, we explore
a novel direction of generative modeling for
weak supervision: Instead of modeling the
output of the annotation process (the labeling
function matches), we generatively model the
input-side data distributions (the feature space)
covered by labeling functions. Specifically,
we estimate a density for each weak labeling
source, or labeling function, by using normal-
izing flows. An integral part of our method
is the flow-based modeling of multiple simul-
taneously matching labeling functions, and
therefore phenomena such as labeling function
overlap and correlations are captured. We an-
alyze the effectiveness and modeling capabil-
ities on various commonly used weak super-
vision data sets, and show that weakly super-
vised normalizing flows compare favorably to
standard weak supervision baselines.

1 Introduction

Currently an important portion of research in nat-
ural language processing is devoted to the goal of
reducing or getting rid of large labeled datasets. Re-
cent examples include language model fine-tuning
(Devlin et al., 2019), transfer learning (Zoph et al.,
2016) or few-shot learning (Brown et al., 2020).
Another common approach is weakly supervised
learning. The idea is to make use of human in-
tuitions or already acquired human knowledge to
create weak labels. Examples of such sources are
keyword lists, regular expressions, heuristics or in-
dependently existing curated data sources, e.g. a
movie database if the task is concerned with TV

shows. While the resulting labels are noisy, they
provide a quick and easy way to create large labeled
datasets. In the following, we use the term labeling
functions, introduced in Ratner et al. (2017), to de-
scribe functions which create weak labels based on
the notions above.

Throughout the weak supervision literature gen-
erative modeling ideas are found (Takamatsu et al.,
2012; Alfonseca et al., 2012; Ratner et al., 2017).
Probably the most popular example of a system
using generative modeling in weak supervision is
the data programming paradigm of Snorkel (Ratner
et al., 2017). It uses correlations within labeling
functions to learn a graph capturing dependencies
between labeling functions and true labels.

However, such an approach does not directly
model biases of weak supervision reflected in the
feature space. In order to directly model the rele-
vant aspects in the feature space of a weakly super-
vised dataset, we investigate the use of density esti-
mation using normalizing flows. More specifically,
in this work, we model probability distributions
over the input space induced by labeling functions,
and combine those distributions for better weakly
supervised prediction.

We propose and examine four novel models for
weakly supervised learning based on normalizing
flows (WeaNF-*): Firstly, we introduce a stan-
dard model WeaNF-S, where each labeling func-
tion is represented by a multivariate normal distri-
bution, and its iterative variant WeaNF-I. Further-
more WeaNF-N additionally learns the negative
space, i.e. a density for the space where the label-
ing function does not match, and a mixed model,
WeaNF-M, where correlations of sets of labeling
functions are represented by the normalizing flow.
As a consequence, the classification task is a two
step procedure. The first step estimates the densi-
ties, and the second step aggregates them to model
label prediction. Multiple alternatives are discussed
and analyzed.



We benchmark our approach on several com-
monly used weak supervision datasets. The results
highlight that our proposed generative approach is
competitive with standard weak supervision meth-
ods. Additionally the results show that smart ag-
gregation schemes prove beneficial.

In summary, our contributions are i) the devel-
opment of multiple models based on normalizing
flows for weak supervision combined with density
aggregation schemes, ii) a quantitative and qualita-
tive analysis highlighting opportunities and prob-
lems and iii) an implementation of the method1. To
the best of our knowledge we are the first to use
normalizing flows to generatively model labeling
functions.

2 Background and Related Work

We split this analysis into a weak supervision and
a normalizing flow section as we build upon these
two areas.

Weak supervision. A fundamental problem in
machine learning is the need for massive amounts
of manually labeled data. Weak supervision
provides a way to counter the problem. The idea
is to use human knowledge to produce noisy, so
called weak labels. Typically, keywords, heuristics
or knowledge from external data sources is used.
The latter is called distant supervision (Craven
and Kumlien, 1999; Mintz et al., 2009). In Ratner
et al. (2017), data programming is introduced, a
paradigm to create and work with weak supervision
sources programmatically. The goal is to learn the
relation between weak labels and the true unknown
labels (Ratner et al., 2017; Varma et al., 2019;
Bach et al., 2017; Chatterjee et al., 2019). In Ren
et al. (2020) the authors use iterative modeling
for weak supervision. Software packages such as
SPEAR (Abhishek et al., 2021), WRENCH (Zhang
et al., 2021) and Knodle (Sedova et al., 2021) allow
a modular use and comparison of weak supervision
methods. A recent trend is to use additional
information to support the learning process.
Chatterjee et al. (2019) allow labeling functions to
assign a score to the weak label. In Ratner et al.
(2018) the human provided class balance is used.
Additionally Awasthi et al. (2020); Karamanolakis
et al. (2021) use semi-supervised methods for
weak supervision, where the idea is to use a small
amount of labeled data to steer the learning process.

1https://github.com/AndSt/wea_nf

Normalizing flows. While the concept of
normalizing flows is much older, Rezende and
Mohamed (2016) introduced the concept to deep
learning. In comparison to other generative
neural networks, such as Generative Adversarial
networks (Goodfellow et al., 2014) or Variational
Autoencoders (Kingma and Welling, 2014),
normalizing flows provide a tractable way to
model high-dimensional distributions. So far,
normalizing received rather little attention in the
natural language processing community. Still, Tran
et al. (2019) and Ziegler and Rush (2019) applied
them successfully to language modeling. An
excellent overview over recent normalizing flow
research is given in Papamakarios et al. (2021).
Normalizing flows are based on the change of
variable formula, which uses a bijective function
g : Z → X to transform a base distribution Z into
a target distribution X:

pX(x) = pZ(z)

∣∣∣∣det(∂g(z)∂zT

)∣∣∣∣−1
where Z is typically a simple distribution, e.g. mul-
tivariate normal distribution, and X is a compli-
cated data generating distribution. Typically, a
neural network learns a function f : X → Z by
minimizing the KL-divergence between the data
generating distribution and the simple base distri-
bution. As described in Papamakarios et al. (2021)
this is achieved by minimizing negative log likeli-
hood

log pX(x) = log pZ(f(x)) + log

∣∣∣∣det(∂f(x)∂xT

)∣∣∣∣
The tricky part is to design efficient architectures
which are invertible and provide an easy and effi-
cient way to compute the determinant. The compo-
sition of bijective functions is again bijective which
enables deep architectures f = f1◦· · ·◦fn. Recent
research focuses on the creation of more expressive
transformation modules (Lu et al., 2021). In this
work, we make use of an early, but well established
model, called RealNVP (Dinh et al., 2017). In each
layer, the input x is split in half and transformed
according to

y1:d = x1:d (1)

yd+1:D = xd+1:D � exp (s(x1:d)) + t (x1:d) (2)

where� is the pointwise multiplication and s and t
neural networks. Using this formulation to realize

https://github.com/AndSt/wea_nf


(a) Schematic view of the densities estimated by WeaNF-S/I.
The concatenated input [x;λ] is fed into the flow to learn the
probability P (x|λ). The graph shows the posterior P (λ|x).

(b) WeaNF-N and WeaNF-M aim to smoothen the probabil-
ity space, aiming to generalize more robustly to instances not
directly matched by labeling functions.

Figure 1: Schematic overview of WeaNF-*. The X−axis represents the labeling function embedding λ, the
Y−axis the text input x. The Z−axis represents the learned density related to a labeling function. In this example
we use the task sentiment analysis and keyword search as labeling functions. Blue denotes a negative sentiment
and red a positive sentiment.

a layer fi, it is easy and efficient to compute the
inverse and the determinant.

Normalizing flows were used for semi-
supervised classification (Izmailov et al., 2019;
Atanov et al., 2020) but not for weakly supervised
learning, which we introduce in the next chapter.

3 Model Description

In this section the models are introduced. The
following example motivates the idea. Consider
the sentence s, "The movie was fascinating, even
though the graphics were poor, maybe due to a low
budget.", the task sentiment analysis and labeling
functions given by the keywords "fascinating" and
"poor". Furthermore, "fascinating" is associated
with the class POS, and "poor" with the class NEG.
We aim to learn a neural network, which translates
the complex object, text and a possible labeling
function match, to a density, in the current exam-
ple P (s|fascinating) and P (s|poor). We combine
this information using basic probability calculus to
make a classification prediction.

Multiple models are introduced. The standard
model WeaNF-S naively learns to represent
each labeling function as a multivariate normal
distribution. In order to make use of unlabeled
data, i.e. data where no labeling function matches,
we iteratively apply the standard model (WeaNF-I).
Based on the observation that labeling functions

overlap, we derive WeaNF-N modeling the
negative space, i.e. the space where the labeling
function does not match and the mixed model,
WeaNF-M, using a common space for single
labeling functions and the intersection of these.
Furthermore, multiple aggregation schemes are
used to combine the learned labeling function
densities. See table 1 for an overview.

Before we dive into details, we introduce
some notation. From the set of all possible inputs
X , e.g. texts, we denote an input sample by x and
its corresponding vector representation by x. The
set of t labeling functions is T = {λ1, . . . , λt} and
the classes are Y = {y1, . . . , yc}. Each labeling
function λ : X → ∅ ∪ {y} maps the input to a
specific class y ∈ Y or abstains from labeling.
In some of our models, we also associate an
embedding with each labeling function, which we
denote by λ ∈ Rh. The set of labeling functions
corresponding to label y is Ty.

WeaNF-S/I. The goal of the standard model is
to learn a distribution P (x|λ) for each labeling
function λ. Similarly to Atanov et al. (2020) in
semi-supervised learning, we use a randomly ini-
tialized embedding λ ∈ Rh to create a representa-
tion for each labeling function in the input space.
We concatenate input and labeling function vector
and provide it as input to the normalizing flow, thus



P (y|x) ∝ WeaNF-S/I WeaNF-N WeaNF-M

Maximum maxλ∈Ty Pθ(x|λ)
√ √

Union
∑

λ∈Ty P (λ|x)
√

NoisyOr 1−
∏
λ∈Ty (1− P (λ|x))

√

Simplex P
([
x; 1
|Ty |
∑

λ∈Ty λ
]) √

Table 1: Overview over the used aggregation schemes. Note that P (λ|x) is only accessible with WeaNF-N (see
equation 4). Bold symbols denote vector representations.

learning P ([x;λi]), where [·] describes the con-
catenation operation. A standard RealNVP (Dinh
et al., 2017), as described in section 2 is used. See
appendix B.1 for implementational details. In order
to use the learned probabilities to perform label pre-
diction, an aggregation scheme is needed. For the
sake of simplicity, the model predicts the label cor-
responding to the labeling function with the highest
likelihood, y = argmaxy∈Y maxλ∈Ty P (x|λ).

Additionally, to make use of the unlabeled data,
i.e. the data points where no labeling function
matches, an iterative version WeaNF-I is tested.
For this, we use an EM-like (Dempster et al.,
1977) iterative scheme where the predictions of the
model trained in the previous iteration are used as
labels for the unlabeled data. The corresponding
pseudo-code is found in algorithm 1.

Algorithm 1 Iterative Model (WeaNF-I)

Require: Xl ∈ Rnl×d, corresponding matches
λl ∈ {0, 1}nl×t, unmatched Xu ∈ Rnu×d

F = train_flow(Xl, λl)
for i = 1, . . . , r do

(λu)i = argmaxλ F ((Xu)i;λ)
X = concat(Xl, Xu), λ = concat(λl, λu)
F = train_flow(X,λ)

end for

Negative Model. In typical classification sce-
narios it is enough to learn P (x|y) to compute
a posterior P (y|x) by applying Bayes’ formula
twice, resulting in

P (y|x) = P (x|y)P (y)
P (x|y)P (y) + P (x|¬y)P (¬y)

(3)

where the class prior P (y) is typically approx-
imated on the training data or passed as a pa-
rameter. This is not possible in the current set-
ting as often two labeling functions match simul-

taneously. In order to learn P (λ|x), we explore
a novel variant that additionally learns P (x|¬λ).
The learning process is similar to P (x|λ), so a
second embedding λ̃ is introduced to represent
¬λ. We optimize P ([x;λ] and P

([
x; λ̃

])
simul-

taneously. In each batch I , the positive sample
pairs (xi, λi)i∈I and negative pairs (xi, λj), sam-
pled such that (xi, λj) /∈ {(xi, λi)}i∈I , are used to
train the network. The number of negative samples
per positive sample is an additional hyperparameter.
Now Bayes’ formula can be used as in equation 3
to obtain

P (λ|x) = P (x|λ)P (λ)
P (x|λ)P (y) + P (x|¬λ)P (¬λ)

. (4)

The access to the posterior probability P (λ|x) pro-
vides additional opportunities to model P (y|x).
After initial experimentation we settled on two op-
tions. A simple addition of probabilities neglecting
intersection probability, equation 5, which we call
Union, and the NoisyOr formula, equation 7, which
has previously shown to be effective in weakly su-
pervised learning (Keith et al., 2017):

P (y|x) ∝
∑
λ∈Ty

P (λ|x) (5)

P (y|x) = P ({∨λ∈Tyλ}|x) (6)

= 1−
∏
λ∈Ty

(1− P (λ|x)) (7)

Mixed Model. It was already mentioned that
it is common that two or multiple labeling func-
tions hit simultaneously. While WeaNF-N pro-
vides access to a posterior distribution which al-
lows to model these interactions, the goal of the
mixed model WeaNF-M is to model these intersec-
tions explicitly already in the density of the nor-
malizing flow. More specifically, we aim to learn
P (x|{λi}i∈I) for arbitrary index families I . Once
again, the embeddings space is used to achieve this



Dataset #Classes #Train / #Test samples #LF’s Coverage(%) Class Balance

IMDb 2 39741 / 4993 20 0.60 1:1
Spouse 2 8530 / 1187 9 0.30 1:5
YouTube 2 1440 / 229 10 1.66 1:1
SMS 2 4208 / 494 73 0.51 1:6
Trec 6 4903 / 500 68 1.73 1:13:14:14:9:10

Table 2: Some basic statistics describing the datasets. Coverage is computed on the train set by #matches /
#samples.

goal. For a given sample x and a family I of match-
ing labeling functions, we uniformly sample from
the simplex of all possible combinations and ob-
tain λI =

∑
i∈I αiλi, αi ≥ 0,

∑
i∈I αi = 1. Af-

terwards we concatenate the weighted sum of the
labeling function embeddings λI with the input x
and learn P ([x;λI ]). Now that the density is able
to access the intersections of labeling functions, we
derive a new direct aggregation scheme. By σy we
denote the simplex generated by the set of bound-
ary points {λ}λ∈Ty . It is important to think about
this simplex, as it theoretically describes the input
space where the model learns the density related
to class y. We use the naive but efficient variant
which just computes the center of the simplex:

P (y|x) ∝ P

x; 1

|Ty|
∑
λ∈Ty

λ

 (8)

Implementation. In practice, sampling of data
points has to be handled on multiple occasions.
Empirically and during the inspection of related
implementations, e.g. the Github repository ac-
companying Atanov et al. (2020), we found that
it is beneficial if every labeling function is seen
equally often during training. It supports prevent-
ing a biased density towards specific labeling func-
tions. When training WeaNF-N, the negative space
is much larger than the actual space, so an addi-
tional hyperparameter controlling the amount of
negative samples is needed. WeaNF-M aims to
model intersecting probabilities directly. Most in-
tersections occur too rarely to model a reasonable
density. Thus we decided to only take co-occures
into account which occur more often than a certain
threshold. See appendix A.3 to get a feeling for the
correlations in the used datasets.

4 Experiments

In order to analyze the proposed models experi-
ments on multiple standard weakly supervised clas-

sification problems are performed. In the follow-
ing, we introduce datasets, baselines and training
details.

4.1 Datasets
Within our experiments, we use five classification
tasks. Table 2 gives an overview over some key
statistics. Note that these might differ slightly com-
pared to other papers due to the removal of dupli-
cates. For a more detailed overview of our prepro-
cessing steps, see appendix A.1.

The first dataset is IMDb (Internet Movie
Database) and the accompanying sentiment analy-
sis task (Maas et al., 2011). The goal is to classify
whether a movie review describes a positive or a
negative sentiment. We use 10 positive and 10 nega-
tive keywords as labeling functions. See Appendix
A.2 for a detailed description.

The second dataset is the Spouse dataset (Cor-
ney et al., 2016). The task is to classify whether
a text holds a spouse relation, e.g. "Mary is mar-
ried to Tom". Here, 90% of the samples belong
to the no-relation class, so we use macro-F1 score
to evaluate the performance. As the third dataset
another binary classification problem is given by
the YouTube Spam (Alberto et al., 2015) dataset.
The model has to decide whether a YouTube com-
ment is spam or not. For both, the Spouse and
the YouTube dataset, the labeling functions are
provided by the Snorkel framework (Ratner et al.,
2017).

The SMS Spam detection dataset (Almeida et al.,
2011), we abbreviate by SMS, also asks for spam
but in the private messaging domain. The dataset is
quite skewed, so once again macro-F1 score is used.
Lastly, a multi-class dataset, namely TREC-6 (Li
and Roth, 2002), is used. The task is to classify
questions into six categories, namely Abbreviation,
Entity, Description, Human and Location. The la-
beling functions provided by (Awasthi et al., 2020)
are used for the SMS and the TREC dataset. We



IMDb Spouse(F1) YouTube SMS (F1) Trec

MV 56.84 49.87 81.66 56.1 61.2
MV + MLP 73.20 29.96 92.58 92.41 53.27
DP + MLP 67.79 57.05 88.79 84.40 43.00
WeaNF-S 73.06 52.28 89.08 86.71 67.4
WeaNF-I 74.08 57.96 89.08 93.54 67.8
WeaNF-N (NoisyOr) 72.96 54.60 90.83 79.63 54.8
WeaNF-N (Union) 71.98 50.83 91.70 83.48 60.2
WeaNF-M (Max) 70.16 55.16 85.15 88.23 49.8
WeaNF-M (Simplex) 63.53 56.91 86.03 76.29 25.4

Table 3: Comparison of baselines to our model variants. The numbers reflect accuracies, or F1-scores, where
explicitly mentioned. Names in parenthesis describe the aggregation mechanism.

took the preprocessed versions of the data available
within the Knodle weak supervision programming
framework (Sedova et al., 2021).

4.2 Baselines
Three baselines are used. While there are many
weak supervision systems, most use additional
knowledge to improve performance. Examples
are class balance (Chatterjee et al., 2019), semi-
supervised learning with very little labels (Awasthi
et al., 2020; Karamanolakis et al., 2021) or multi-
task learning (Ratner et al., 2018). To ensure a
fair comparison, only baselines are used that solely
take input data and labeling function matches into
account. First we use majority voting (MV) which
takes the label where the most rules match. For in-
stances where multiple classes have an equal vote
or where no labeling function matches, a random
vote is taken. Secondly, a multi-layer perceptron
(MLP) is trained on top of the labels provided by
majority vote. The third baseline uses the data
programming (DP) paradigm. More explicitly, we
use the model introduced by Ratner et al. (2018)
implemented in the Snorkel (Ratner et al., 2017)
programming framework. It performs a two-step
approach to learning. Firstly, a generative model is
trained to learn the most likely correlation between
labeling functions and unknown true labels. Sec-
ondly, a discriminative model uses the labels of the
generative model to train a final model. The same
MLP as for second baseline is used for the final
model.

4.3 Training Details
Text input embeddings are created with the Sen-
tenceTransformers library (Reimers and Gurevych,
2019) using the bert-base-nli-mean-tokens model.

They serve as input to the baselines and the nor-
malizing flows. Hyperparameter search is per-
formed via grid search over learning rates of
{1e− 5, 1e− 4}, weight decay of {1e− 2, 1e− 3}
and epochs in {30, 50, 100, 300, 450}, and label
embedding dimension in 10, 15, 20 times the num-
ber of classes. Additionally, the number of layers
is in {6, 8}, and the negative sampling value for
WeaNF is in {2, 3}. The full set up ran 30 hours
on a single GPU on a DGX 1 server.

5 Analysis

The analysis is divided into three parts. Firstly, a
general discussion of the results is given. Secondly,
an analysis of the densities predicted by WeaNF-N
is shown and lastly, a qualitative analysis is per-
formed.

5.1 Overall Findings

Table 3 exposes the main evaluation. The horizon-
tal line separates the baselines from our models.
For WeaNF-N and WeaNF-M, no iterative schemes
were trained. This enables a direct comparison to
the standard model WeaNF-I.

Interestingly, the combination of Snorkel and
MLP’s is often not performing competitively. In
the IMDb data set there is barely any correlation
between labeling functions, complicating Snorkel’s
approach. The large number of labeling functions
e.g. Trec, SMS, could also complicate correlation
based approaches. Appendix A.3 shows correlation
graphs.

As indicated by the bold numbers, the WeaNF-I
is the best performing model. Only on the YouTube
dataset, an iterative scheme could not improve
the results. Related to this observation, in Ren



Labeling Function Example Dataset P (x|λ) Label (λ) Gold Prediction

won .* claim ...won ... call ... SMS ↑ Spam Spam Spam
.* I’ll .* sorry, I’ll call later SMS ↑ No Spam No Spam No Spam
.* i .* i just saw ron burgundy captaining a party

boat so yeah
SMS ↓ No Spam No Spam No Spam

(explain|what) .* mean .* What does the abbreviation SOS mean ? Trec ↑ DESCR ABBR DESCR
(explain|what) .* mean .* What are Quaaludes ? Trec ↑ DESCR DESCR DESCR
who.* Who was the first man to ... Pacific Ocean

?
Trec ↓ HUMAN HUMAN HUMAN

check .* out .* Check out this video on YouTube: YouTube ↑ Spam Spam Spam
#words < 5 subscribe my YouTube ↑ Spam Spam No Spam
.* song .* This Song will never get old YouTube ↓ No Spam No Spam No Spam
.* dreadful .* ...horrible performance .... annoying IMDb ↑ NEG NEG NEG
.* hilarious .* ...liked the movie...funny catch-

phrase...WORST...low grade...
IMDb ↑ POS NEG POS

.* disappointing .* don’t understand stereotype ... goofy .. IMDb ↓ NEG NEG POS

.* (husband|wife) .* ...Jill.. she and her husband... Spouse ↑ Spouses Spouses Spouses

.* married .* ... asked me to marry him and I said yes! Spouse ↑ Spouses No Spouses Spouses
family word Clearly excited, Coleen said: ’It’s my el-

dest son Shane and Emma.
Spouse ↓ No Spouses No Spouses No Spouses

Table 4: Examples selected from the 10 most likely (↑) and 10 most unlikely (↓) combinations of sentences and
labeling functions, using the density P (x|λ) provided by WeaNF-I. Labeling function matches are bold. We
observe that the flow often generalizes to unmatched examples. We slightly simplified some rules and shortened
some texts in order to fit the page size.

IMDb Spouse YouTube SMS Trec

Acc 72.38 74.04 78.17 88.71 72.63
P 5.93 5.1 38.95 23.3 13.65
R 37.53 39.31 55.01 44.34 61.07
F1 10.25 9.02 45.61 30.55 22.31
Cov 4.31 5.74 19.31 3.01 4.39

Table 5: Evaluation of the labeling function prediction
P (λ|x). Precision, Recall and F1 score are computed
via the weighted average of the statistics of all label-
ing functions. Coverage is computed as #matches/#all
possible matches.

et al. (2020) the authors achieve promising results
using iterative discriminative modeling for semi-
supervised weak supervision.

WeaNF-N outperforms the standard model in
three out of five datasets. We observe that these
are the datasets with a large amount of labeling
functions. Possibly, this biases the model towards
a high value of P (x|¬λ) which confuses the pre-
diction.

The simplex aggregation scheme only outper-
forms the maximum aggregation on two out of five
datasets. We infer that the probability density over
the labeling function input space is not smooth
enough. Ideally, the simplex method should always
have a high confidence in the prediction of a label-
ing function λ if its confident on the non-mixed
embedding λ which is what Max is doing.

5.2 Density Analysis

We divide into a global analysis and a local, i.e.
a per-labeling function, analysis. Table 5 pro-

Dataset Labeling Fct. Cov(%) Prec Recall

IMDb *boring* 5.8 13.12 26.87
Spouse family word 9. 0 16.53 35.96
YouTube *song* 23.58 56.72 70.73
SMS won *call* 0.81 66.67 1.0
Trec how.*much 2.4 60.0 75.0

Table 6: Statistics for the labeling functions obtaining
the highest F1 score for the prediction P (λ|x), using
the WeaNF (NoisyOr) model.

Dataset Labeling Fct. Cov(%) Prec Recall

IMDb *imaginative* 0.42 0.77 52.38
Spouse spouse keyword 14.5 0 0
YouTube person entity 2.62 6.45 33.33
SMS I .* miss 0.6 0 0
Trec what is .* name 2.2 2.26 100

Table 7: Same as table 6, but here the labeling functions
obtaining the lowest F1 score are shown. Only those
are taken into account which occur more often than 10
times in the test set.



vides some global statistics, table 6 and 7 subse-
quently show statistics related to the best and worst
performing labeling function estimations. In the
local analysis a labeling function is predicted if
P (λ|x) ≥ 0.5. The WeaNF-N model is used be-
cause it is the only model with direct access to
P (λ|x).

It is important to mention that in the local anal-
ysis, a perfect prediction of the matching labeling
function is not wanted, as this would mean that
there is no generalization. Thus, a low precision
might be necessary for generalization, and a the
recall would indicate how much of the original se-
mantic or syntactic meaning of a labeling function
is retained.

Interestingly, while the overall performance of
WeaNF-N is competitive on the IMDb and the
Spouse data sets, it is failing to predict the cor-
rect labeling function. One explanation might be
that these are the data sets where the texts are sub-
stantially longer which might be complicated to
model for normalizing flows. In table 7 typically
the worst performing approximation of labeling
function matches seems to be due to low coverage.
An exception is the the Spouse labeling function.

5.3 Qualitative Analysis

In table 4 a number of examples are shown. We
manually inspected samples with a very high or
low density value. Note that density values re-
lated to P (x|λ), λ ∈ Ty are functions f tak-
ing arbitrary values which only have to satisfy
Ex:λ(x)=y[f(x)] = 1.

We observed the phenomenon that either the
same labeling functions take the highest density
values P (x|λ) or that a single sample often has a
high likelihood for multiple labeling functions. In
the table 4 one can find examples where the learned
flows were able to generalize from the original
labeling functions. For example, for the IMDb
dataset, it detects the meaning "funny" even though
the exact keyword is "hilarious".

6 Conclusion

This work explores the novel use of normalizing
flows for weak supervision. The approach is di-
vided into two logical steps. In the first step, nor-
malizing flows are employed to learn a probability
distribution over the input space related to a label-
ing function. Secondly, principles from basic prob-
ability calculus are used to aggregate the learned

densities and make them usable for classification
tasks. Motivated by aspects of weakly supervised
learning, such as labeling function overlap or cov-
erage, multiple models are derived each of which
uses the information present in the latent space
differently. We show competitive results on five
weakly supervised classification tasks. Our anal-
ysis shows that the flow-based representations of
labeling functions successfully generalize to sam-
ples otherwise not covered by labeling functions.
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A Additional Data Description

A.1 Preprocessing
A few steps were performed, to create a unified
data format. The crucial difference to other pa-
pers is that we removed duplicated samples. There
were two cases. Either there were very little du-
plicates or the duplication occurred because of the
programmatic data generation, thus not resembling
the real data generating process. Most notably, in
the spouse data set 60% of all data points are du-
plicates. Furthermore, we only used rules which
occurred more often than a certain threshold as it
is impossible to learn densities on only a handful
of examples. The threshold is In order to have un-
biased baselines, we ran the baseline experiments
on the full set of rules and the reduced set of rules
and took the best performing number.

A.2 IMDb rules
The labeling functions for the IMDb dataset are
defined by keywords. We manually chose the key-
words. We defined them in such a way that their
meaning has rather little semantic overlap. The
keywords are shown in table 8.

A.3 Labeling Function Correlations
In order to use labeling functions for weakly super-
vised learning, it is important to know the correla-
tion of labeling functions to i) derive methods to
combine them and ii) help to understand phenom-
ena of the model predictions.

Thus we decided to add correlation plots. More
specifically, we use the Pearson Correlation coeffi-
cient.

positive negative

beautiful poor
pleasure disappointing

recommendation senseless
dazzling second-rate

fascinating silly
hilarious boring
surprising tiresome
interesting uninteresting
imaginative dreadful

original outdated

Table 8: Keywords used to create rules for the IMDb
dataset.

B Additional Implementationial Details

B.1 Architecture
As mentioned in section 3, the backbone of our flow
is RealNVP architecture, which we introduced in
section 2. With sticking to the notation in formula
2 the network layers to approximate the functions
s and t are shown below

1 s = nn.Sequential(
2 nn.Linear(dim, hidden_dim),
3 nn.LeakyReLU(),
4 nn.BatchNorm1d(hidden_dim),
5 nn.Dropout(0.3),
6 nn.Linear(hidden_dim, dim),
7 nn.Tanh()
8 )
9 t = nn.Sequential(

10 nn.Linear(dim, hidden_dim),
11 nn.LeakyReLU(),
12 nn.BatchNorm1d(hidden_dim),
13 nn.Dropout(0.3),
14 nn.Linear(hidden_dim, dim),
15 nn.Tanh()
16 )

Hyperparameters are the depth, i.e. number of
stacked layers, and the hidden dimension.

B.2 WeaNF-M Sampling
For the mixed model WeaNF-M the sampling pro-
cess becomes rather complicated.

Next up, the code to produce the convex combi-
nation α1, . . . , αt is shown. The input tensor takes
values in {0, 1} and has shape b × t where b is
the batch size and t the number of labeling func-
tions.Note that some mass is put on every labeling
functions. We realized that this bias imrpoves per-
formance.

1 def weight_batch(self, batch_y: torch.Tensor):
2 """Returns weighting array forming convex sum.
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(a) IMDb (b) Spouse

(c) YouTube (d) SMS

(e) Trec



3 Shape: (batch_dim, num_rules)
4 """
5 batch_y = batch_y.float()
6 batch_y += 0.1 * torch.ones(batch_y.shape)
7 batch_y = batch_y * torch.rand(batch_y.shape)
8 row_sum = batch_y.sum(axis=1, keepdims=True)
9 nbatch_y = batch_y / row_sum

10 return nbatch_y


