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Abstract

Image clustering divides a collection of images001
into meaningful groups, typically interpreted002
post-hoc via human-given annotations. Those003
are usually in the form of text, begging the004
question of using text as an abstraction for im-005
age clustering. Current image clustering meth-006
ods, however, neglect the use of generated tex-007
tual descriptions. We, therefore, propose Text-008
Guided Image Clustering, i.e. generating text009
using image captioning and visual question-010
answering (VQA) models, and subsequently011
clustering the generated text. Further, we intro-012
duce a novel approach to inject task- or domain013
knowledge for clustering by prompting VQA014
models. Across eight diverse image clustering015
datasets, our results show that the obtained text016
representations outperform image features. Ad-017
ditionally, we propose a counting-based cluster018
explainability method. Our evaluations show019
that the derived keyword-based explanations020
describe clusters better than the respective clus-021
ter accuracy suggests. Overall, this research022
challenges traditional approaches and paves the023
way for a paradigm shift in image clustering,024
using generated text1.025

1 Introduction026

Psychologists, neuroscientists, and linguists have027

long studied the dependence of vision and language028

in humans (Pinker and Bloom, 1990; Nowak et al.,029

2002; Corballis, 2017). Although the relationship030

between these modalities is not fully understood,031

there is a consistent finding: the brain generates032

a condensed representation to transmit visual in-033

formation between brain regions Cavanagh (2021).034

A widely discussed type of representation is often035

referred to as “visual language” or “language of036

thought” (Fodor, 1975; Jackendoff et al., 1996).037

Studies based on these concepts suggest that lan-038

guage can be a crucial driver of visual understand-039

ing. For example, children remember conjunctions040

1Github link is published upon acceptance.
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Figure 1: A t-SNE visualization of the BLIP-2 image
embeddings for the STL10 dataset. While the images
are highly similar (blue background), text such as bird
and jet, clearly distinguishes objects (and clusters).

of visual features better when accompanied by a 041

textual description (Dessalegn and Landau, 2013), 042

e.g. “the yellow is left of the black”. Given this re- 043

lationship between visual perception and language 044

comprehension, the question arises whether an ab- 045

stract textual representation benefits image cluster- 046

ing. 047

With the significant growth of visual content cre- 048

ated online, image clustering has become essential 049

in, e.g., retrieval systems, image segmentation, or 050

medical applications (Mittal et al., 2021; Pandey 051

and Khanna, 2016; Kart et al., 2021). Language 052

offers dense, human-interpretable information, pro- 053

viding multiple benefits when clustering (Figure 054

1). Emerging multi-modal foundation models and 055

large language models (LLMs), e.g. Blip2 (Li et al., 056

2023) or GPT-3 (Davidson et al., 2018), allow to 057

derive a “visual language” from images. 058

In this paper, we propose text-guided image clus- 059

tering, i.e. deriving a textual representation from 060
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images to perform clustering purely based on their061

text representation. In Figure 2 we outline three062

approaches to text-guided image clustering. These063

approaches are structured by the degree of external064

knowledge introduced into the clustering process.065

First, caption-guided clustering uses image cap-066

tioning models to generate brief descriptions of067

the image content requiring no external knowl-068

edge. In order to inspect the qualities of image069

and text representations, we compare vision en-070

coder embeddings with TF-IDF (Sparck Jones,071

1972) and SentenceBERT (SBERT, Reimers and072

Gurevych, 2019) representations of the generated073

text. Our experiments show that on a broad set of074

eight image clustering datasets, text representations075

on average outperform the image representations076

of three state-of-the-art (SOTA) models. Second,077

keyword-guided clustering injects knowledge about078

the clustering task by prompting visual question-079

answering (VQA) models to generate keywords,080

using the assumption that only a few keywords081

of interest are necessary to describe each image082

sufficiently. Interestingly, we observe an average083

performance increase of 5% for TF-IDF-based clus-084

terings. Third, prompt-guided clustering introduces085

domain knowledge in the form of tailored prompts086

for VQA models. Quantitatively, we observe an-087

other performance increase and qualitatively show088

that clusters related to the question are formed bet-089

ter. Further, we propose to use the generated text090

for a straightforward counting-based cluster ex-091

plainability method, generating a keyword-based092

description for each cluster.093

Our contributions can be summarized as follows:094

• We propose text-guided image clustering, a095

novel paradigm leveraging generated text for096

image clustering.097

• We introduce a new way to perform im-098

age clustering by injecting task- and domain099

knowledge via prompting visual question-100

answering models.101

• We show in our experiments that text-guided102

image clustering outperforms clustering solely103

based on images.104

• We propose a counting-based aggregation105

method, generating a description for each clus-106

ter, exhibiting strong interpretability.107
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Figure 2: Taxonomy of the text generation processes,
structured by the degree of external knowledge. Text
is generated from the image (upper left) by BLIP-2
functioning as an image-captioning or VQA model.

2 Related Work 108

We approach image clustering in a novel way by 109

generating more abstract text descriptions from pre- 110

trained image-to-text models. Therefore, we dis- 111

cuss below how our approach relates to earlier work 112

in image clustering (Section 2.1), text clustering 113

(Section 2.2) and give an overview of the enabling 114

technology of image-to-text models in Section 2.3. 115

2.1 Image Clustering 116

Clustering is the task of grouping similar objects to- 117

gether while keeping dissimilar ones apart. Image 118

clustering is a special case of clustering where the 119

objects of interest are images. A key problem for 120

unsupervised clustering of images is finding a good 121

similarity measure. Deep learning based clustering 122

methods approach this problem by learning a rep- 123

resentation that maps semantically similar images 124

closer together (Xie et al., 2016; Yang et al., 2017; 125

Niu et al., 2020; Caron et al., 2018; Zhou et al., 126

2022b). A downside of unsupervised methods is 127

that relying only on image information can suffer 128

from the blue sky problem (Häusser et al., 2018). 129

For example in Figure 1 the blue background pix- 130

els make up most of the images. Our approach 131

circumvents this downside by generating a concise 132

text description of an image. Multi-view clustering 133

methods like (Jin et al., 2015; Chaudhary et al., 134

2019; Yang et al., 2021; Xu et al., 2022) combine 135

heterogenous views of data instances into a single 136

clustering. In contrast to our method, all of them 137

assume the availability of all modalities, including 138

possible text descriptions. 139

An important problem in clustering is explain- 140

ability (Fraiman et al., 2011; Moshkovitz et al., 141

2020), aiming to describe the content of the in- 142

dividual clusters. In general, there are clustering 143
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algorithms that are designed such that the resulting144

clustering is explainable (Dao et al., 2018), or post-145

processing methods that explain a given clustering.146

Existing methods use interpretable features such as147

semantic tags (Sambaturu et al., 2020; Davidson148

et al., 2018), especially when textual explainability149

is considered. For instance, Zhang and Davidson150

(2021) use integer linear programming to assign151

tags to clusters. Contrary to our approach, these152

methods assume given textual tags.153

2.2 Text Clustering154

Typically, in text clustering, the text is transformed155

into a vector representation, and then a standard156

clustering algorithm, e.g. K-Means is applied.157

Early text representation approaches use counting-158

based representations such as Bag-of-Words (BoW)159

or TF-IDF (Sparck Jones, 1972; Zhang et al., 2011).160

The field moved away from frequency-based ap-161

proaches as they neglect word order and are not162

able to represent contextualized information, e.g.163

computer ‘mouse’ vs. the animal ‘mouse’ (Peters164

et al., 2018). In recent years, the focus in Nat-165

ural Language Processing (NLP) shifted towards166

contextualized neural network-based vector encod-167

ings, mostly transformer-based methods (Vaswani168

et al., 2017). The first breakthrough in transformer-169

based sentence representation was Sentence-BERT170

(SBERT) (Reimers and Gurevych, 2019), a siamese171

network architecture fine-tuning BERT (Devlin172

et al., 2019) on supervised datasets, e.g. NLI. Fol-173

lowing SBERT, text representation techniques are174

dominated by contrastive learning where the choice175

of positive and negative pairs is unsupervised, e.g.176

SimCSE (Gao et al., 2021), or weakly-supervised,177

e.g. E5 (Wang et al., 2022b).178

2.3 Image-To-Text Models179

Image captioning, an integral task in image-to-text180

models, provides textual descriptions for given im-181

ages. Early models such as NIC (Vinyals et al.,182

2015) were a starting point for combining vision183

and language processing. Subsequent models (Rad-184

ford et al., 2021; Yuan et al., 2021) additionally185

allow multi-modal inputs, integrating both im-186

age and textual information to improve captioning187

and support tasks like Visual Question Answering188

(VQA) (Antol et al., 2015). Wang et al. (2022a)189

advance the field by not relying on an object de-190

tector, using only one image encoder and one text191

decoder, and unifying image captioning and VQA192

in one architecture. Flamingo (Alayrac et al., 2022)193

allows interleaving images and text by introducing 194

Perceiver Resamplers on top of pre-trained image 195

and language models. BLIP-2 (Li et al., 2023) 196

is a state-of-the-art model which fixes pre-trained 197

language and image models and only fine-tunes a 198

so-called Query-Transformer with a small number 199

of trainable parameters. This is useful for our com- 200

parison because this means the underlying models 201

are not trained on multimodal data. 202

3 Methodology 203

First, we formally introduce text-guided image clus- 204

tering. Second, we discuss the experimental setup, 205

including clustering setup and vector representa- 206

tions of image and text. Lastly, we describe the 207

used datasets. 208

3.1 Problem Definition 209

Let X = x1, · · · ,xn ⊂ X denote the set of images 210

in our dataset. The goal of image clustering is to 211

obtain a clustering h : X → Y that assigns images 212

to their respective clusters. We propose to employ 213

image-to-text models which typically consist of an 214

image encoder f : X → Z , embedding images 215

into a latent space Z ⊂ Rd, and a text decoder, i.e. 216

a LLM, g : Z → T , where T is some text space. 217

The text is subsequently embedded t : T → V ⊂ 218

Rl and clustered, e.g., with K-Means. 219

3.2 Experimental Setup 220

In the following, we describe the choices and eval- 221

uation criteria, common to all experiments. 222

Clustering. To shed light on the question of 223

whether text is a (more) suitable representation for 224

image clustering, we compare the performance of 225

the same clustering algorithm on the image space 226

Z = f(X) against a vectorization of the generated 227

text T = t(g(Z)). Following the deep cluster- 228

ing (Xie et al., 2016; Yang et al., 2017) and self- 229

supervised learning (Zhou et al., 2022a) literature, 230

we use K-Means to evaluate the suitability of the 231

respective image and text embeddings for cluster- 232

ing. In all experiments, we run K-Means 50 times 233

and report the mean outcome to get robust results. 234

Whenever we need a single run, e.g. for qualita- 235

tive analysis, the run with the lowest K-Means loss, 236

also called inertia, is used. 237

Vectorization. In order to employ clustering algo- 238

rithms, images, and texts need to be represented as 239

vectors. For image vectorization, we use the latent 240

space of an image encoder. We experiment with 241
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multiple models which are introduced in Section242

4.1. For text vectorization, one frequency-based243

and one neural algorithm are considered. TF-IDF244

(Sparck Jones, 1972) is a standard counting-based245

representation. Using the scikit-learn (Pedregosa246

et al., 2011) implementation, English stop-words247

are removed, and a maximum vocabulary of 2000248

words is set. No additional preprocessing is per-249

formed. Since nowadays transformer-based text250

representations are the standard, we experiment251

with SBERT2 (Reimers and Gurevych, 2019) as it252

was the first BERT-based sentence representation,253

is widely used, and is still competitive with SOTA254

sentence representation models.255

Metrics. To measure clustering performance, the256

Normalized Mutual Information (NMI) (Vinh et al.,257

2010) and the Cluster Accuracy (ACC) (Yang et al.,258

2010) are computed. Both metrics take values be-259

tween 0 and 1, where higher numbers indicate a260

better match with the ground truth labels. For the261

sake of readability, we multiply them by 100.262

3.3 Datasets263

We consider a diverse collection of datasets, sepa-264

rated into three groups according to various chal-265

lenges for image clustering. Partially, there is an266

overlap between the properties of the datasets. Nev-267

ertheless, our selection of datasets is motivated by268

this grouping. An overview of the dataset statis-269

tics and samples of each dataset are depicted in270

Appendix A.271

Standard Datasets. We utilize three widely-used272

image clustering benchmarking datasets: STL10273

(Coates et al., 2011), Cifar10 (Krizhevsky and Hin-274

ton, 2009) and ImageNet10 (Deng et al., 2009).275

Background Datasets. To assess the robustness276

of our proposed method against background noise,277

we include Sports10 (Trivedi et al., 2021) and iNat-278

uralist2021 (Grant Van Horn, 2021), two datasets279

containing high-resolution images of sports scenes280

in video games and natural environments.281

Human Interpretable Datasets. Three datasets282

focusing on human concepts rather than individ-283

ual objects are included. LSUN (Yu et al., 2015),284

showing e.g. a living room or a kitchen, Human Ac-285

tivity Recognition (HAR) (Nagadia, 2022), contain-286

ing scenes such as running and Facial Expression287

Recognition (FER2013) (Barsoum et al., 2016), e.g.288

surprise, are considered.289

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

4 Text-Guided Image Clustering 290

We explore the possibilities and strengths of gen- 291

erated text for image clustering. First, we use stan- 292

dard image captioning and observe that the text 293

representation outperforms the image representa- 294

tion. Second, we guide the text generation using 295

VQA models to generate keywords, which we call 296

keyword-guided clustering, and introduce prompt- 297

guided clustering, where we use domain-specific 298

prompts to elicit relevant properties. Third, we use 299

the generated text for cluster explainability, obtain- 300

ing keyword-based descriptions for each cluster. 301

4.1 Caption-Guided Image Clustering 302

Modern foundation models provide the possibility 303

to work with multiple modalities. In particular, the 304

task of image captioning describes images with 305

text. Thus, as a first experiment, we investigate 306

how well text clustering on captioned text works 307

in comparison to image clustering, and establish a 308

consistent experimental setup. 309

Setup. The commonality between current image 310

captioning models is that they consist of an image 311

encoder and a generative LLM to generate text con- 312

ditioned on the latent image space. As described 313

in Section 3.2 we assess the quality of image and 314

generated text by comparing the clustering perfor- 315

mance of the vision encoder embeddings with TF- 316

IDF and SBERT representations using K-Means. 317

We benchmark three SOTA image-to-text models, 318

namely a community-trained version of Flamingo3 319

(Alayrac et al., 2022), GIT4 (Wang et al., 2022a), 320

and BLIP-25 (Li et al., 2023), all available within 321

the Huggingface Transformers library (Wolf et al., 322

2020). We probabilistically sample a maximum of 323

80 tokens, without any additional parameters. Only 324

for Flamingo, we set the Top-K to 8 as in the origi- 325

nal repository. A more detailed model description 326

is given in Section 2. 327

We start by studying the effect of the number of 328

captions generated per image. For each amount of 329

captions, we sample 6 versions and report the mean 330

and standard error in Figure 3. 331

Results. We observe that, for TF-IDF, with a grow- 332

ing number of captions, the performance increases 333

monotonically, whereas SBERT saturates for many 334

datasets. Being counting-based, we think that the 335

3https://huggingface.co/dhansmair/
flamingo-mini

4https://huggingface.co/microsoft/git-large
5https://huggingface.co/Salesforce/

blip2-flan-t5-xl
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Standard Background Human
Model Representation STL10 Cifar10 ImageNet10 Sports10 iNaturalist2021 FER2013 LSUN HAR Avg

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Flamingo Image 95.0 95.13 84.0 84.19 99.38 98.85 75.87 81.61 40.8 58.09 36.79 17.33 60.67 60.98 50.07 43.67 67.82 67.48
TF-IDF 82.22 77.0 81.85 76.23 94.32 89.57 54.16 49.86 34.27 43.63 25.77 2.91 70.58 64.04 40.92 35.52 60.51 54.85
SBERT 97.74 94.68 93.64 86.15 98.36 96.05 60.32 55.89 44.93 58.99 29.79 9.77 68.96 68.41 51.37 46.84 68.14 64.6

GIT Image 51.15 63.62 66.37 64.87 95.41 93.78 71.17 75.69 42.47 53.0 24.1 2.15 52.06 51.78 38.81 33.18 55.19 54.76
TF-IDF 79.92 74.71 74.0 66.73 82.69 76.78 87.42 84.6 36.12 42.84 25.24 1.66 65.34 57.68 42.87 36.05 61.7 55.13
SBERT 96.58 93.34 86.79 76.97 96.37 92.72 85.73 88.14 46.04 58.78 26.61 1.95 69.82 61.95 48.11 42.66 69.51 64.56

BLIP-2 (*) Image 99.65 99.16 98.69 97.59 99.8 99.35 91.31 93.22 44.97 62.7 35.97 21.2 62.07 64.47 52.65 47.06 73.14 73.09
TF-IDF 83.3 79.35 89.0 84.75 93.54 88.81 99.38 98.65 34.17 39.07 31.86 6.89 76.69 71.05 50.51 46.09 69.81 64.33
SBERT 98.03 96.27 97.31 94.07 98.22 96.63 99.07 98.47 47.43 61.63 38.21 20.53 81.11 74.37 50.85 46.68 76.28 73.58

´

Table 1: Comparison of Clustering Accuracy and NMI of image space and generated captions, using TF-IDF and
SBERT representations, of multiple Image-to-Text models. For each combination of dataset and metric, boldened
numbers represent the best overall performance, and underlined numbers the best performance per model. (*) Note
that BLIP-2 is pre-trained on ImageNet21K (Deng et al., 2009), which STL10 and ImageNet10 are subsets of.
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Figure 3: Effect of the number of captions sampled
per image. The number of captions is depicted on the
X-axis, mean and standard deviation of clustering per-
formance are on the Y-axis. Captions are generated by
BLIP-2.

reason is that TF-IDF is better at reducing the effect336

of outlier captions, i.e. single bad captions. For337

all following experiments, we choose to sample 6338

text generations as a trade-off between sampling339

efficiency and clustering performance.340

The full image captioning results are shown in341

Table 1. The average scores show that SBERT342

outperforms the other two representations across343

all model types on almost all datasets, while344

the TF-IDF representation performs worst. Note345

that we abstain from sophisticated preprocessing346

such as lemmatization or stemming, common for347

frequency-based representations, such as TF-IDF.348

This might (to a certain degree) explain the worse349

performance.350

Regarding the models, we observe that BLIP-2 351

is the best-performing one. It performs especially 352

well on the standard datasets which we think is due 353

to the fact that it was pre-trained on ImageNet21k 354

in a self-supervised fashion. 355

In summary, the results show that text repre- 356

sentations, obtained only based on (latent) image 357

representations, provide competitive clustering per- 358

formance, often outperforming the corresponding 359

image representation. 360

4.2 Knowledge Injection 361

After we previously investigated the clustering per- 362

formance of text generated using image captioning 363

models, we now investigate the potential of guiding 364

the text generation such that it is specifically suited 365

for clustering. By using modern VQA models, it 366

is possible to elicit dedicated information from im- 367

ages. In the following, we introduce two ways to 368

make use of VQA models. 369

Keyword-Guided Clustering. Given that it 370

is common to (verbally) describe clusters using 371

keywords, we hypothesize that it is beneficial to 372

prompt the model to generate keywords. The rea- 373

sons are: 1) keywords provide useful inputs for 374

simpler, traditional count-based representations 375

such as TF-IDF, 2) keywords are useful for count- 376

based analysis methods, such as the proposed clus- 377

ter explainability algorithm in section 4.3, and 3) 378

ground truth cluster labels (as given by classifica- 379

tion datasets used in the clustering literature) are 380

typically described using only a few keywords. 381

Prompt-Guided Clustering. In real-world scenar- 382

ios, often, some domain knowledge about the given 383

data is available. The ability of VQA models to re- 384

trieve dedicated information from images opens up 385

the possibility to use domain knowledge in the nat- 386

ural form of text. An example is to ask "Which ac- 387
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Sports10 iNaturalist2021 LSUN HAR FER2013 Avg.
Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Image ViT 91.31 93.22 44.97 62.7 62.07 64.47 52.65 47.06 35.97 21.2 57.39 57.73

Caption-Guided TF-IDF 99.38 98.65 34.17 39.07 76.69 71.05 50.51 46.09 31.86 6.89 58.52 52.35
SBERT 99.07 98.47 47.43 61.63 81.11 74.37 50.85 46.68 38.21 20.53 63.33 60.34

Keyword-Guided TF-IDF 99.08 97.82 42.13 48.25 76.2 69.28 51.35 45.47 47.05 27.34 63.16 57.63
SBERT 96.89 96.87 48.44 59.48 70.63 70.82 55.66 50.07 46.44 29.96 63.61 61.44

Prompt-Guided TF-IDF 84.83 94.46 38.01 47.61 66.4 59.92 52.74 47.96 46.86 34.25 57.77 56.84
SBERT 98.7 98.12 48.57 62.23 71.59 63.54 60.93 52.94 45.6 36.04 65.08 62.57

Table 2: Comparison of clustering performance of the BLIP-2 image encoder features, and examined types of
generated text. For prompt-guided clustering, the clusterings belonging to the prompt with the lowest K-Means are
evaluated. For each dataset and metric combination, the best performance is bold, and the second-best performance
is underlined.

tivity is performed in the picture?". Note, crucially,388

that this is not possible using standard image clus-389

tering models. We refer to this as Prompt-Guided390

Clustering.391

Setup. Due to resource constraints, we choose to392

only use the best-performing (cf. Table 1) image-393

to-text model, BLIP-2, for the subsequent experi-394

ments. Based on the results depicted in Figure 3,395

we sample k = 6 texts for each image.396

For keyword-guided clustering, we use the ques-397

tion "Which keywords describe the image?". To398

perform prompt-guided clustering, we create four399

questions for each of the datasets. The questions400

were created by transforming the dataset task into a401

question, e.g. for human action recognition "Which402

activity is performed?" is asked. Find all questions403

in Appendix B.404

The “standard” datasets exhibit only a collection405

of objects, making it difficult to pose questions406

other than ‘What objects are described?’, thus they407

are not included in the following discussion. It is408

well known that current LLMs possibly generate409

very different texts, even though the prompt has410

the same meaning. Therefore, in Table 2 we use411

an unsupervised heuristic to decide which prompt412

works best by taking the prompt belonging to the413

clustering with the lowest K-Means loss.414

Results. In Table 2 we observe that the average415

performance (Avg.) for caption-guided image clus-416

tering and SBERT-based keyword-guided cluster-417

ing is similar. Using keywords, TF-IDF improves418

on average by 5% for both cluster accuracy and419

NMI, closing the gap to SBERT. This result is in420

line with our hypothesis that keywords are a useful421

representation for image clustering.422

As a case study, Table 3 holds the results for the423

HAR dataset. We observe a notable variance in the424

Modality / Question SBERT
Acc NMI

Image 52.65 47.06
Which keywords describe the image? 55.66 50.07
What type of motion is depicted in the picture? 49.20 42.54
Which activity is shown in the picture? 56.03 49.69
Which action is shown in the picture? 58.68 52.86
What is the person doing in the picture? 60.93 52.94

Table 3: A case study for prompt-guided image cluster-
ing on Human Action Recognition, using the SBERT
representation. Find the full table in Appendix B.

performance of multiple prompts. This is a com- 425

mon phenomenon for prompting-based methods 426

(Zhao et al., 2021). Using the K-Means loss as a 427

proxy for selecting the best prompt leads to the best 428

average performance in Table 2. 429

Interestingly, the confusion matrices in Figure 4 430

show different assignment patterns depending on 431

the question posed to the VQA model. For instance, 432

when posing the question ‘What room is shown in 433

the picture?’, all room clusters are formed well, 434

but the others, e.g. bridge or tower, are worse. 435

We argue that this variation is a feature of prompt- 436

guided image clustering, e.g., during exploratory 437

data analysis where one might want to investigate 438

different aspects of a dataset. 439

In summary, we demonstrate that it is possible 440

to improve clustering performance by injecting do- 441

main knowledge in the form of text and that the 442

clustering changes according to the posed ques- 443

tions. Further examples of the impact of different 444

prompts on the embedded space and clustering are 445

shown in Figures 6 and 7 in the Appendix. 446

4.3 Cluster Explainability 447

So far, we use the generated text solely to form clus- 448

ters. But given the (built-in) interpretability of text, 449
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Figure 4: Confusion matrices based on three clustering results from text generated with three different VQA prompts.
While a similar cluster accuracy is achieved, we observe that the clustering relates to the prompt. In the middle all
room clusters are clustered well, on the right side the clustering is not able to distinguish well between dining room,
kitchen and restaurant (see corresponding dining room row), but leads to better overall accuracy

a natural extension is to use text as an explanation450

of the formed clusters. Explainability for image451

clustering is an important issue, as it provides in-452

sights into how the clustering algorithm groups the453

images, helping users understand the underlying454

patterns and relationships.455

The availability of textual descriptions for each456

cluster sample allows us to extrapolate to textual457

descriptions of each cluster as a whole, improving458

the explainability of the clustering. Note that this is459

not possible using models considering only images.460

We hypothesize that a concise way to describe461

a cluster is to use a small set of keywords. This is462

based on the fact that the used benchmark datasets463

use keyword labels. Thus we introduce the follow-464

ing algorithm to obtain keywords for each cluster465

from the generated text.466

Explainability Algorithm. For each predicted467

cluster, the keywords are sorted by their number of468

occurrences in the generated texts. For each cluster,469

the algorithm returns the most frequent keywords.470

If a keyword occurs in multiple cluster descriptions,471

it is not considered and the next most occurring is472

chosen. Based on an initial screening of the LSUN473

dataset, we take the two most occurring keywords.474

Find the Pseudocode in Algorithm 1.475

Setup. We provide a quantitative analysis of the476

generated descriptions by applying two metrics.477

First, we introduce the subset exact match (SEM)478

metric, for which we lowercase each string and479

check whether the ground truth cluster name ap-480

pears in the predicted keywords. No further stan-481

dardization, such as stemming or lemmatization, is 482

performed. Second, SBERT embeddings are used 483

to check the similarity between cluster names and 484

keywords obtained by the explainability algorithm. 485

Again, based on a screening of the LSUN dataset, 486

we assume the description to be correct if the co- 487

sine similarity crosses the threshold of 0.4. For 488

each dataset, we provide the cluster accuracy, and 489

the explainability performance given the ground 490

truth (Truth) clustering and the predicted (Pred) 491

clustering, corresponding to the cluster accuracy. 492

Out of the 50 K-Means runs on which we based our 493

previous evaluation on, we choose the clustering 494

with the lowest K-Means loss. 495

Results. Table 5 depicts the quantitative evalua- 496

tion of our algorithm. We observe that the SBERT 497

metric is always equal to or higher than the SEM 498

metric, which makes sense as SEM is a rather strict 499

metric, not understanding synonyms or syntactical 500

changes, e.g. "TableTennis" vs. "table tennis". In 501

most cases, the SBERT metric is also higher than 502

the clustering accuracy. A (qualitative) example 503

of generated descriptions and metrics is shown in 504

Table 4. We observe that both metrics are unable 505

to understand that “TableTennis” and “ping pong, 506

table tennis” have the same meaning, but still, all 507

cluster descriptions of Sports10 are correct. For 508

iNaturalist2021 and FER2013, we observe that the 509

generated text is often of bad quality, resulting in 510

low-quality descriptions. We thus conclude that the 511

generated descriptions provide a good overview of 512

the content of the generated clusters, and in most 513
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Ground Truth Explanation SEM SBERT Sim.

Sports10

AmericanFootball football, nfl 0 1
Basketball basketball, basketball game 1 1
BikeRacing motorcycle, rider 0 1
CarRacing car, speed 0 0
Fighting fight, boxing 0 1
Hockey hockey, hockey game 1 1
Soccer soccer, soccer game 1 1
TableTennis ping pong, table tennis 0 0
Tennis tennis, tennis game 1 1
Volleyball volleyball, beach 1 1

LSUN

bedroom bedroom, bed 1 1
bridge bridge, river 1 1
church_outdoor church, cathedral 0 1
classroom classroom, teacher 1 1
conference_room meeting, conference 0 1
dining_room dining room, dining table 1 1
kitchen kitchen, wood 1 1
living_room living room, living 1 1
restaurant restaurant, bar 1 1
tower tower, city 1 1

Table 4: Examples of generated explanations for
Sports10 and LSUN. If a value in the SEM and SBERT
Sim. columns is 1, the metric says ground truth and
explanation match.

cases describe the dataset better than clustering514

accuracy suggests.515

5 Broader Impact516

We think there is a lot of unused potential to use text517

as an abstraction in image clustering. We discuss518

two topics.519

Text as a proxy for “meaningful” clustering.520

Clustering research aims to find meaningful clus-521

ters. In general, it is unclear to define what mean-522

ingful means exactly and some researchers even523

call it an ill-posed problem. We argue that text is a524

good proxy to express meaningfulness as it is based525

on the natural human form of communication. This526

is a novel viewpoint on the task of image clustering527

aligning with research methodologies in the clus-528

tering community, where clustering methods are529

commonly benchmarked with datasets that have530

human-annotated textual labels as ground truth.531

Our research contributes to the discussion about532

meaningful clustering by showing that generated533

text improves the interpretability of the detected534

clusters.535

Knowledge Injection. Furthermore, what de-536

termines a meaningful clustering can be highly sub-537

jective. For a given dataset, different people are538

interested in different types of information. For539

example, in real-world scenarios, an expert might540

have several questions about a dataset based on541

their domain knowledge. We show that these ques-542

Cluster Acc SEM SBERT Sim.
TF-IDF SBERT Truth Pred Truth Pred

STL10 87 98 100 100 100 100
ImageNet10 94 99 30 30 100 100
CIFAR10 91 97 90 90 100 100
Sports10 99 98 50 50 80 80
iNaturalist2021 40 48 0 0 91 45
LSUN 75 68 70 80 100 100
HAR 51 56 20 13 87 87
FER2013 46 46 12 12 38 25

Table 5: Evaluation of our explainability method. In
“Truth”, the explainability method is applied to the
ground truth clustering whereas in “Pred” it is applied
to the clustering of the given clustering accuracy. Num-
bers are boldened if the explainability score of a found
clustering (“Pred” columns) outperforms clustering ac-
curacies.

tions can be used to guide the clustering process by 543

prompting VQA models. Given the current speed 544

of research, we believe that the increasing ability to 545

use more detailed prompts will drastically improve 546

our knowledge injection method. This will open 547

up completely new research avenues for injecting 548

knowledge into the clustering process. 549

6 Conclusion 550

In this work, we introduce Text-Guided Image Clus- 551

tering, using image-captioning and VQA models to 552

automatically generate text, and subsequently clus- 553

ter only the generated text. After applying multiple 554

captioning models on eight diverse datasets, our 555

experiments show that representations of generated 556

text descriptions outperform image representations 557

on many datasets. Furthermore, we use text to in- 558

gest task- and domain knowledge by prompting 559

VQA models. This leads to further clustering per- 560

formance improvements and the finding that it is 561

possible to shape the clustering favorably accord- 562

ing to the information given by a specific prompt. 563

Additionally, we use the generated text to obtain 564

a keyword-based description for each cluster and 565

show quantitatively and qualitatively the usefulness 566

of those. 567

Other areas, such as psychology or neuroscience, 568

research the relationship between language and 569

visual information, e.g. by examining how kids 570

understand scenes with or without additional de- 571

scriptions. In the field of image clustering, research 572

about the possibilities the abstraction of text pro- 573

vides to partition data into meaningful groups is 574

underrepresented. We propose to make use of gen- 575

erated text. 576
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7 Limitations577

While our proposed approach shows promising re-578

sults, there are several limitations that should be579

taken into consideration.580

Text-guided image clustering is dependent on581

the quality and effectiveness of the generated text.582

In cases where the generated text is incomplete,583

misleading, or fails to capture the essential features584

of the images, the clustering algorithm may strug-585

gle to accurately group similar samples. Current586

image-to-text models are mostly trained on data587

obtained from the internet. For example, because588

of licensing and other restrictions, many domain-589

specific images are not represented appropriately in590

the training data, resulting in poor text generation591

abilities for those domains.592

Currently, our focus lies solely on the compari-593

son of images and generated text for the purpose of594

clustering. We did not explore the potential benefits595

of combining images and corresponding generated596

text in the clustering process. The field of multi-597

view clustering combines multiple heterogenous598

modalities of data instances in to a single cluster-599

ing. However, multi-view clustering assumes the600

availability of accurate and reliable data. In order601

to bridge the gap between the noisy nature of the602

generated text and the application of multi-view603

clustering, dedicated research and development ef-604

forts are necessary.605

The approach of prompt-guided image clustering606

is based on the assumption that domain knowledge607

is readily accessible, allowing the generation of608

specific questions to guide VQA models. While we609

show that leveraging domain knowledge can prove610

advantageous, clustering methods are frequently611

employed for exploratory data analysis purposes.612

Introducing domain knowledge may limit the dis-613

covery of novel insights or alternative interpreta-614

tions due to biased prompts.615
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A Dataset Description908

Here, we provide some additional information909

about the datasets. An overview of the datasets910

is given in Table 6, including name, number of911

classes, number of images, and size, given in pix-912

els.913

You can find examples of images of each dataset914

in Table 7.915

In the following, there is a small description of916

the datasets, including the class labels, provided917

in their original form which we also use in the918

evaluation of our explainability algorithm.919

STL10 (Coates et al., 2011). This traditional920

dataset consists of 10 classes, namely “deer, horse,921

bird, cat, ship, airplane, car, truck, monkey, dog”.922

We use the full dataset, i.e. train and test split.923

Note, that it is inspired by Cifar10 and attempts924

to be more complicated because it contains fewer925

images.926

Cifar10 (Krizhevsky and Hinton, 2009). The927

dataset is comprised of 10 similar object classes:928

“deer, horse, bird, automobile, airplane, cat, ship,929

truck, dog, frog”. Again, we use the full dataset.930

ImageNet10. Imagenet-10 is a subset of the931

larger ImageNet dataset, containing 10 classes.932

Given the hierarchical nature of of ImageNet, each933

class is described by multiple keywords: ’trailer934

truck, tractor trailer, trucking rig, rig, articulated935

lorry, semi’, ’snow leopard, ounce, Panthera uncia’,936

’airliner’, ’Maltese dog, Maltese terrier, Maltese’,937

’sports car, sport car’, ’orange’, ’soccer ball’, ’air-938

ship, dirigible’, ’container ship, containership, con-939

tainer vessel’, ’king penguin, Aptenodytes patago-940

nica’941

Sports10 (Trivedi et al., 2021). The Sports-10942

dataset provides labeled images from 175 video943

games across 10 sports genres. The labels are “Car-944

Racing, Tennis, AmericanFootball, BikeRacing,945

TableTennis, Fighting, Basketball, Hockey, Soccer,946

Volleyball”.947

Inaturalist2021 (Grant Van Horn, 2021). The948

full dataset contains images of 10,000 species949

separated into 10 classes, which are “Animalia,950

Arachnids, Amphibians, Birds, Insects, Ray-finned951

Fishes, Plants, Mollusks, Reptiles, Fungi, Mam-952

mals”. We experiment with the validation set.953

Dataset Group Name No. of classes No. of Images Size (pixels)

Standard STL10 10 13000 96x96
ImageNet10 10 13000 500x364
CIFAR10 10 60000 32x32

Background Sports10 10 3000 1280x720
iNaturalist 2021 11 100000 284x222

Human LSUN 10 3000 341x256
Human Action Recognition 15 18000 240x160
FER2013 8 35488 48x48

Table 6: Overview over some basic dataset statistics.

LSUN (Yu et al., 2015). The Large-Scale 954

Scene Understanding (LSUN) dataset offers la- 955

beled images depicting scenes from the following 956

categories: “conference_room, dining_room, bed- 957

room, church_outdoor, bridge, tower, restaurant, 958

living_room, classroom, kitchen”. We experiment 959

with the test set. 960

HAR (Nagadia, 2022). contains images of hu- 961

man activities. They are “running, sleeping, lis- 962

tening_to_music, texting, drinking, clapping, fight- 963

ing, eating, sitting, using_laptop, cycling, calling, 964

laughing, hugging, dancing”. 965

FER2013 (Barsoum et al., 2016). The Facial 966

Expression Recognition 2013 dataset consists of 967

labeled grayscale images depicting human facial 968

expressions, which are “surprise, anger, contempt, 969

happiness, fear, disgust, sadness, neutral”. 970

B Knowledge Injection 971

In section 4.2 we introduce prompt-guided cluster- 972

ing. For each dataset, multiple prompts are tested. 973

They are generated by adapting the dataset name 974

and transforming them into a question. Table 8 975

encompasses all prompts used in our experimental 976

setup, accompanied by the corresponding evalua- 977

tion performance metrics, namely Cluster Accuracy 978

and (NMI) for the image encoder representation 979

and the TF-IDF and SBERT representations. The 980

used model is BLIP-2. Further, we provide a visual 981

inspection of the same numbers in Figure 5. 982

In order to get a better understanding of the com- 983

parison of embedding structure, and how generated 984

text relates to that, we provide two examples. In 985

Figure 6 there is an example of the LSUN dataset 986

and in Figure 7 there is a corresponding example 987

of the Sports10 dataset. 988
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Figure 5: Comparison of all used strategies. Find the questions for prompt-guided clustering in Table 8.

C Explainability989

In this section, we provide pseudo-code for the990

algorithm in section 4.3. As described previously,991

it counts the number of keyword occurrences per992

cluster. Afterwards, it takes the top two exclusive993

keywords.994

Algorithm 1 Explainability
Require:
1: X = {X1, X2, ..., Xm} : be the set of keyword lists for each sample,
2: Y = {Y1, Y2, ..., Ym} : be the set of (predicted) cluster labels for each

sample,
3: n : Number of output keywords per cluster.
Ensure: List
4: procedure SIMPLEXAI(X,Y )
5: A, O← [], [] ▷ Active keywords, and others
6: for i in unique(Y ) do
7: K ← count-ordered list of keywords cluster i
8: A[i]←K[0 : n]
9: O[i]←K[n :]
10: end for
11: while

⋂
i A[i] ̸= ∅ do ▷ Remove duplicates

12: D ←
⋂

i A[i]

13: A[i]← A[i] \D
14: A[i]← A[i] ∪O[0 : |D|]
15: O[i]← O[2|D| :]
16: end while
17: return A
18: end procedure
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Keywords: meeting,  teacher, 
lecture, meeting room,  office, 
conference room,  classroom

Keywords: student,  seminar,  
audience,  teacher, presentation, 
presenter,  lecture, classroom

VQA: teacher teaching a class,  
meeting room,  a classroom, 
classroom setting

VQA: group of people in a conference room, 
meeting room, this picture was taken inside a 
seminar centered discussion

Figure 6: t-SNE embeddings of BLIP2 for the LSUN dataset. From left to right: Image embedding (Acc: 63.11),
Keyword SBERT embedding (Acc: 71.12) and VQA SBERT embedding (Acc: 81.83 with prompt: “What
environment is shown in the picture?”). The improvement in cluster accuracy corresponds to better separated
clusters in the t-SNE embeddings.

Keywords: speed racing car,  
track race,  road, crash, driving

Keywords: motorcycle, highway,  
play,  screen,  road game, rider

VQA: motorbike racing, racing
game, riding a motorcycle

VQA: racing, car racing game, driving a car 
down the highway with a beach behind it

Figure 7: t-SNE embeddings of BLIP2 for the Sports10 dataset. From left to right: Image embedding (Acc: 91.31),
Keyword SBERT embedding (Acc: 96.89) and VQA SBERT embedding (Acc: 99.00 with prompt: “What type of
sport is shown in the picture?”). The improvement in cluster accuracy corresponds to better separated clusters in the
t-SNE embeddings.
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Dataset Image1 Label1 Image2 Label2

STL10 bird car

CIFAR10 automobile horse

ImageNet10 airship, dirigible soccer ball

Sports10 CarRacing BikeRacing

iNaturalist2021 Birds Insects

LSUN kitchen bridge

Human Action Recognition cycling running

FER2013 anger happiness

Table 7: Examplatory images of the datasets. The images contain different properties, such as image quality or
background noise. Also, the labels vary in their syntax and semantic meaning, e.g. objects vs. movements.
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Image TF-IDF SBERT
Dataset Modality / Question Acc NMI Acc NMI Acc NMI

Sports10 Image 91.31 93.22
Caption 99.38 98.65 99.07 98.47
Keyword 99.08 97.82 96.89 96.87
Which sport is shown in the picture? 84.89 94.57 98.7 98.12
What type of sport is shown in the picture? 84.83 94.46 99.0 98.21
Which game is shown in the picture? 84.0 90.64 95.77 95.58
Which sports contest is shown in the picture? 84.76 93.06 98.64 97.7

iNaturalist2021 Image 44.97 62.7
Caption 34.17 39.07 47.43 61.63
Keyword 42.13 48.25 48.44 59.48
What type of biological object is shown in the picture? 38.01 47.61 47.14 61.21
What is the biological classification of the object in the picture? 35.23 39.66 47.82 60.43
Which biological category is shown in the picture? 42.1 50.3 48.57 62.23
Which species is shown in the picture? 45.57 38.13 45.65 56.55

LSUN Image 62.07 64.47
Caption 76.69 71.05 81.11 74.37
Keyword 76.2 69.28 70.63 70.82
What location is shown in the picture? 47.04 45.12 53.49 49.11
What kind of environment is shown in the picture? 72.63 67.52 81.37 74.6
What room is shown in the picture? 66.4 59.92 71.59 63.54
What scene is shown in the picture? 76.71 70.5 78.15 77.05

HAR Image 52.65 47.06
Caption 50.51 46.09 50.85 46.68
Keyword 51.35 45.47 55.66 50.07
What type of motion is depicted in the picture? 42.68 36.69 49.2 42.54
Which activity is shown in the picture? 50.77 46.04 56.03 49.69
Which action is shown in the picture? 52.75 48.13 58.68 52.86
What is the person doing in the picture? 52.74 47.96 60.93 52.94

FER2013 Image 35.97 21.2
Caption 31.86 6.89 38.21 20.53
Keyword 47.05 27.34 46.44 29.96
What type of countenance is shown in the picture? 30.53 9.64 33.53 17.34
Which emotion is shown in the picture? 46.86 34.25 45.6 36.04
Which facial expression is shown in the picture? 48.93 33.55 52.85 39.0
Which mood is shown in the picture? 46.89 28.66 45.54 31.03

Table 8: Full evaluation table for all prompts. All representations, image and text are based on the BLIP-2 model.
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