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Abstract
To reduce the need for human annotations,
large language models (LLMs) have been pro-
posed as judges of the quality of other candi-
date models. LLM judges are typically evalu-
ated by measuring the correlation with human
judgments on generation tasks such as summa-
rization or machine translation. In contrast, we
study LLM judges on mathematical reasoning
tasks. These tasks require multi-step reason-
ing, and the correctness of their solutions is
verifiable, enabling a more objective evaluation.
We perform a detailed performance analysis
and find that the used judges are mostly unable
to improve task performance but are able to
pick the better model. Our analysis uncovers
a strong correlation between judgment perfor-
mance and the candidate model task perfor-
mance. We observe that judges tend to choose
the model of higher quality even if its answer
is incorrect. Further, we show that it is possible
to use statistics, such as the task performances
of the individual models, to predict judgment
performance. In an ablation, we either swap or
mask the candidate answers and observe that
judges often keep the original judgment, pro-
viding evidence that judges incorporate writ-
ing style in their judgments. In summary, we
find that regularities in the judgments are quan-
tifiable using statistical measures and provide
various angles on exploiting them.1

1 Introduction

The automatic evaluation of machine learning mod-
els promises to reduce the need for human annota-
tions. Specifically, the LLM-as-a-judge paradigm
(Zheng et al., 2023) has gained traction, aiming to
assess or compare the quality of generated texts
automatically. This approach is beneficial for
automated data labeling (Tan et al., 2024), self-
improvement of LLMs (Wu et al., 2024), and rank-
ing LLMs with respect to specific tasks (Zheng
et al., 2023).

1Code: git@github.com:AndSt/llm_judges.git

Let x be the original land he had. 3/5x = 12.8, x = 12.8 / 3/5 =
<<12.8/3/5=20.8>>20.8.### 20.8.

Mr. Ruther sold 3/5 of his land and had 12.8 hectares left. How much
land did he have at first?

Question

Mr. Ruther was left with 1 - 3/5 = <<1-3/5=0.4>>0.4 or 2/5 of his
landhis land which is equal to 12.8 hectares. So...###32.

Answer A is correct. In Answer B, the equation is set up incorrectly.
If 12.8 hectares is the amount of land left after selling 3/5 of the
land, then 12.8 hectares represents 2/5 of... {"answer":"A"}

LLM MA

LLM MB

Judge LLM

CoT text Final answer

Figure 1: In our problem setup two LLMs (MA and
MB), provide candidate answers for a math problem,
and a judge LLM has to decide which one is correct.
All three use chain-of-thought (CoT) reasoning (Wei
et al., 2022).

Much like judges in the real world, who are ex-
pected to be exact, fair, and unbiased, e.g., as de-
fined in Bangalore Principles of judicial conduct
(Bangalore Principles, 2002), LLMs, when em-
ployed as judges, should be ethical and logical.
Already the philosopher Aristotle argued that the
virtuous actor exhibits the joint excellence of rea-
son and character (Kraut, 2022). Previous works
investigate properties and biases of LLM judges on
generation tasks such as translation or summariza-
tion (Kim et al., 2024b; Liu et al., 2024). These are
typically evaluated using correlation with human
annotators and are thus inherently subjective.

In this work, we investigate LLM judges on
mathematical reasoning datasets (see Figure 1).
These need complex multi-step reasoning, and the
solution is verifiable, which allows us to investigate
the relationship between judge and candidate mod-
els in a principled manner. We base our analysis on
four large (more than 30B parameters) LLMs and
four small (less than 10B) LLMs on three mathe-
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matical reasoning datasets.
Our experiments contain a detailed performance

examination, confirming that larger models are gen-
erally better judges (Zheng et al., 2023). We find
that only the best-tested model, Qwen 2 72B, con-
sistently improves task performance if we evaluate
the judged samples, but all tested judges likely pick
the better model for a given task.

We investigate subsets with one correct and one
incorrect candidate answer. We uncover a correla-
tion between judgment performance and task per-
formance of the candidate models, showing that
judges tend to select incorrect answers from better
models. Thus, we hypothesize that judges have ac-
cess and rely on the superior writing styles of larger
models instead of solely analyzing the reasoning.
When we divide the datasets into buckets of model
agreement, we observe that agreement is a proxy
for sample difficulty.

Motivated by these regularities, we analyze
whether it is possible to predict judgment perfor-
mance and find that task performances of judge and
candidate LLMs explain most of the variance. We
hypothesize that judges incorporate writing style
into their judgments. Thus, we predict individual
judgments using statistical and transformer-based
models and achieve above-chance performance,
supporting our hypothesis.

Lastly, we test how judgments are affected by
perturbing numeric values in responses by 1) swap-
ping results and 2) masking numeric values. Our
findings reveal that judges largely retain original
judgments, providing further evidence that judges,
in large part, base their decisions on writing style.
In summary, our contributions are as follows:

1. We conduct an in-depth performance analysis
of LLM judges for mathematical reasoning
tasks.

2. Our analysis reveals a correlation between
the judgment and candidate task performance,
providing a novel statistical angle on the anal-
ysis of LLM judges.

3. We show that statistics such as task perfor-
mance or agreement of candidate models are
indicative of judgment performance.

4. After systematically perturbing the candidate
answers, we observe that judges often keep
their original judgments, providing evidence
that judgments are also based on writing style.

2 Related Work

2.1 LLM as Judges
Using LLMs as judges to evaluate text generated
by LLMs, including their own outputs, has re-
cently attracted significant interest because it re-
duces the need for human annotation (Zheng et al.,
2023). Commonly, large frontier models are used
as judges. Applications include the automatic as-
sessment of language model capabilities and, e.g.,
determining which model performs better on a
given task (Zheng et al., 2023) and reinforcement
learning from AI feedback by automatically gener-
ating data for preference optimization (Bai et al.,
2022; Wu et al., 2024).

Various methods exist to make judgments
(Zheng et al., 2023; Liusie et al., 2024). One ap-
proach is pairwise selection (Wang et al., 2024a),
where two answers are presented, and the model is
asked to select the better one. Another approach
is pointwise grading (Li et al., 2024), where the
model is asked to assign a grade based on a pre-
defined scale, and the answer with a better grade
is chosen. Judgment prompts may involve refer-
ence solutions or not. Another body of research
explicitly trains models to act as judges (Kim et al.,
2024a; Wang et al., 2024a) or closely related, as
reward models (Wang et al., 2024b; Li et al., 2024).

The effectiveness of LLMs as judges is typically
assessed by measuring the correlation or overlap
with human judgments (Zheng et al., 2023; Kim
et al., 2024b). In contrast, we focus on difficult
tasks with a concrete final answer. Finally, we want
to stress that several works caution for the use of
LLM judges as experts (Bavaresco et al., 2024;
Koo et al., 2023; Raina et al., 2024). In a similar
vein, we aim to understand regularities and their
shortcomings.

2.2 Biases in LLM-as-a-judge
Human-annotated data inherently reflects the an-
notators’ biases and opinions. These biases can be
detrimental or (intentionally) beneficial, depend-
ing on the goals of the annotation process (Plank,
2022). Similarly, several studies have explored the
biases present in LLM judges:

One linguistic bias is ordering bias (Zheng et al.,
2023; Koo et al., 2023), where a judge gives a
different answer depending on the order in which
answers are presented. Panickssery et al. (2024)
note that it is possible to interpret position bias as
a sign that the model is unsure. There are multiple



works (Xu et al., 2024; Panickssery et al., 2024; Liu
et al., 2024) that find evidence for self-bias or self-
preference. Koo et al. (2023) provide a benchmark
for analyzing cognitive biases. West et al. (2024)
and Oh et al. (2024) explore the “Generative AI
Paradox” where generating solutions is easier for
the LLM than analyzing them, unlike humans who
typically find analysis easier than generation.

In this work, we aim to establish a better un-
derstanding of underlying regularities that relate
judgments to statistics such as model performance.

3 General Setup

In the following, we describe the problem setting,
including the used notation, and the general experi-
mental setting including used models and datasets.

3.1 Problem Description
In this work, we consider two models, denoted by
MA,MB ∈ M, providing candidate solutions for a
sample of a dataset D and a judge model MJ ∈ M,
which is tasked to select, to “judge”, whether it
prefers the solutions of the models MA or MB . The
solutions are represented by the random variables
A and B. We consider the events that solutions are
true (A = T ), false (A = F ), or that their solution
is the same (A = B). We denote the judgment of
the judge MJ by the random variable ∆J , which
can either be correct (∆J = T ), incorrect (∆J =
F ) or choose a specific model MA (∆J = MA).

Given that the final answer is either correct or
incorrect, we can break the probability of the judge
making a correct judgment P (∆J = T |A,B,D)
given a sample of a dataset D and the answers of
two models MA,MB down into the following four
cases:

P (∆J = T |A,B,D) (1)

=
∑

(X,Y )∈C

P (∆J = T |A = X,B = Y,D)P (A = X,B = Y |D)

= P (A = T,B = T |D)

+ P (∆J = T |A = T,B = F,D)P (A = T,B = F |D)

+ P (∆J = T |A = F,B = T,D)P (A = T,B = F |D)

where C = (T, F )2. Note that in cases where
both answers are correct or incorrect imply that the
judgment is also either correct or incorrect respec-
tively, i.e., P (∆J = T |A = T,B = T ) = 1 and
P (∆J = T |A = F,B = F ) = 0.

3.2 Datasets
The experiments encompass three mathematical
reasoning datasets where models highly benefit

from multi-step CoT reasoning. For all datasets,
we use accuracy as the performance metric.
AQUA-RAT (Ling et al., 2017) is a dataset to test
the quantitative reasoning ability of LLMs. Unlike
the other two datasets, the questions are multiple-
choice. GSM8K (Cobbe et al., 2021) consists of
grade school math word problems. The answers
are free-form numbers. MATH (Hendrycks et al.,
2021) contains challenging competition mathemat-
ics problems. Find more details in Appendix A.1

3.3 Models

We evaluate the performance of openly available
LLMs, including four large models Qwen 2 72B
(Yang et al., 2024), Llama 3 70B (AI@Meta, 2024),
Yi 1.5 34B (Young et al., 2024), Mixtral 8x7B
(Jiang et al., 2024) and four small models, namely
Llama 3 8B (AI@Meta, 2024), Gemma 1.1 7B
(Gemma Team et al., 2024), Mistral 7B v0.3 (Jiang
et al., 2023), and Mistral 7B v0.1 (Jiang et al.,
2023). We use the chat- or instruction-tuned model
variants and test each model as a candidate answer
generator and as a judge. More information is in
Appendix A.2.

3.4 Inferences

This section describes the candidate answer gen-
eration and the judgment generation. Find more
information on prompts and hardware details in
Appendix A.

Candidate answer generation. To judge two
candidate answers (including of the same model),
we sample two initial CoT solutions for each model
using 4-shot prompting. We set the temperature to
0.9 to get two different solutions.

Judgements. We choose the first candidate gen-
eration for each model and generate judgments for
all 36 unique model combinations.2 If both mod-
els are the same, we take the second initial gen-
eration. We accommodate positional bias (Zheng
et al., 2023; Koo et al., 2023) by evaluating the two
candidate answers in both possible orders for each
question and then taking the average correctness of
the judgments as the final assessment. The judge
has to choose if the first or second answer is cor-
rect. The prompt is zero-shot and applies CoT, the
temperature is set to 0 for deterministic generation
results.

2We consider all pairs from the eight LLMs, including
self-pairing, yielding

(
8+2−1

2

)
= 36 combinations.



Qwen 2 72B Llama 3 70B Yi 1.5 34B Mixtral 8x7B Llama 3 8B Gemma 1.1 7B Mistral 7B v0.3 Mistral 7B v0.1

(1) P (∆J = T |A,B,D)
AQUA_RAT 66.05 55.98 62.2 57.08 51.59 53.52 54.96 51.41
GSM8K 77.06 72.41 72.64 68.81 65.88 65.47 68.57 63.28
MATH 29.66 24.64 26.69 23.60 22.35 21.66 22.68 19.91

(2) P (∆J = T |A ̸= B,D)
AQUA_RAT 53.79 45.04 49.73 44.47 36.56 40.48 38.26 36.43
GSM8K 63.16 59.33 56.01 46.68 41.29 38.71 42.59 39.72
MATH 25.04 22.14 22.22 18.29 17.04 16.00 16.88 15.22

(3) P (∆J = T |{A,B} = {T, F}, D)
AQUA_RAT 73.13 64.63 68.66 63.26 52.74 58.04 54.54 52.45
GSM8K 85.65 81.32 76.84 64.97 57.87 54.16 59.58 55.48
MATH 80.48 73.01 71.37 61.03 58.04 54.70 56.27 50.91

Table 1: Performance of judge LLMs in three cases: (1) accuracy on all samples, (2) accuracy where models MA

and MB disagree, and (3) accuracy where only one model is correct. Results are averaged over all pairs (MA,MB),
with the highest accuracy in bold and the second highest underlined.

4 General Performance

The experiments have multiple degrees of freedom:
judges, candidate models, and datasets. There-
fore, we first examine judgments per dataset, and
secondly, we investigate judgments per candidate
model pair. Afterwards, we provide evaluations for
two applied questions.

4.1 Performance per dataset

We begin by examining the judgment performance,
i.e., how often the judge picks a correct answer,
across different datasets. Therefore, we average
the performance across all model pairs (MA,MB).

Setup. Table 1 considers three cases where each
case focuses on a specific subset of the datasets:
Case (1) investigates the observed task perfor-
mance P (∆J = T |A,B,D) where we evaluate
the task performance using the answers chosen
by the judges. Note that this includes samples
where both candidate models give the same an-
swer. Case (2) asks how often judges choose a
correct answer given that the answers differ, i.e.,
P (∆J = T |A ̸= B,D). Note that this may (and
often does) include cases where both answers are
incorrect. Case (3) gives the probability that the
judge chooses the correct answer given that one
answer is correct, and the other answer is incorrect,
formally P (∆J = T |A ̸= B, T ∈ {A,B}, D).

Results. We observe that large models outper-
form smaller models. Specifically, we see that
Qwen 2 72B is the best judge, followed by Yi 1.5
34B. The performance of Llama 3 70B is, on av-
erage, comparable to that of Yi 1.5 34B. Note that
performance in Case (1) and Case (2) is often quite
low, especially for MATH, as there are many cases
where the judge can only choose wrong answers.
Importantly, we observe that smaller models with
fewer than 10B parameters are unreliable judges.
Especially, in Case (3), where a correct answer is

(a) Qwen 2 70B (b) LLama3 70B

(c) Yi 1.5 34B (d) Mixtral 8x7B

Figure 2: Observed performance P (∆J = T |A,B,D)
of four judge LLMs (a-d) in evaluating various model
pairs, averaged across all datasets.

provided, smaller models only achieve an accuracy
of around 55%, barely better than random chance.
Therefore, we focus on the four larger models as
judges in the subsequent analysis.

4.2 Performance per model combination

The comparative performance of model pairs offers
insights into which model is better for the specific
task or which combination of models yields the
best results.

Setup. Figure 2 illustrates the final performance
P (∆J = T |A,B), indicating the probability of a
judge choosing a correct answer given two models
A and B. The results are averaged over datasets
and presented as an upper triangular matrix due to
symmetry. If both models in a pair are the same,
A = B, we employ the second response generated
with temperature sampling to introduce variation.
We report the performance of all models used as
judges in the Appendix B in Table D.



Figure 3: Amount of model pairs (MA,MB) where
the answers chosen by the judge achieve a higher task
performance than the models individually (green). The
blue bar only considers models where the judge is at
least as good as the candidate models.

Results. We observe that the best performance
is achieved when both the candidate answers and
the judge are the highest-performing model, Qwen
2 72B. An analysis of the first rows (cf. Figure
2) reveals a notable trend: The final performance
declines when comparing the output of a strong
model against a mediocre model (e.g., Llama3-8B)
but then improves again when compared against the
weakest model. This suggests that judging becomes
more challenging when distinguishing between the
correct answers of a strong model and the incorrect
answers of a mediocre one, compared to discerning
the outputs of a bad one.

4.3 Do judges elicit task improvement?

One use case for LLM judges is to improve task
performance. A potential application is to train on
answers chosen by the judge (Yuan et al., 2024).

Setup. Therefore, we test how often the perfor-
mance of the answers chosen by the judge is bet-
ter than the performance of the individual mod-
els. Formally, for all pairs of models MA,MB and
datasets D, how often is the observed performance
P (∆J = T |A,B,D) larger than max{P (A =
T |D), P (B = T |D)}? In Figure 3 the green bar
tests all model pairs, and the blue bar only pairs
where the judge is at least as good as the candidate
models, i.e., P (J |D) ≥ max{P (A|D), P (B|D)}.
The task performances of all models are given in
the Appendix B in Table 9.

Results. We see that only Qwen 2 72B increases
the performance reliably. However, it is easier for
the judge to improve performance if it compares
answers of less or equally good candidate models.

Figure 4: Percentage of model pairs (MA,MB) where
a judge picks a better model MA (meaning P (A =
T |D) > P (B = T |D)), by selecting more answers of
MA than from MB .

4.4 Does the judge prefer the better model?

Another application of LLM judges is whether they
can accurately identify which model performs bet-
ter for a given task. This is crucial if we want to
rank LLMs by their capabilities or if a practitioner
wants to decide which model to deploy.

Setup. To assess this, we evaluate the frequency
with which a judge selects the superior model.
For a candidate model pair MA,MB ∈ M, al-
ways assume they are ordered, such that P (A =
T |D) > P (B = T |D). Then, specifically,
we determine the proportion for which the judge
chooses MA more often than MB , or formally,
how often is P (∆J = MA|A,B,D) > P (∆J =
MB|A,B,D) for all candidate pairs and datasets.

Results. The judges consistently perform well in
the selection of the better model. Notably, we find
that Qwen 2 72B can only not rank the pair Mis-
tral 7B v0.1 and v0.3 on the MATH dataset. This
issue appears minor, as both models exhibit simi-
larly poor performance on the challenging MATH
dataset (with accuracies of 6.13% and 3.10%, re-
spectively), meaning most judgments compare two
wrong answers. Notably, already the worst judge,
Mixtral 8x7B, performs well. In summary, we see
that judges are more capable of aggregate-level
rankings than instance-level rankings.

5 Analysis of Subsets

We investigate properties that occur when we use
subsets based on the correctness of models or agree-
ment between models.



(a) Qwen2 72B (b) LLama2 70B

(c) Yi 1.5 43B (d) Mixtral 8x7B

Figure 5: Judges’ accuracy vs. performance gap be-
tween two candidate models MA and MB . Each point
represents a subset where MA is correct and MB is in-
correct. The color reflects the size of these subsets.

5.1 Do task performances correlate with
judgments?

We consider the subset of highest practical rele-
vance where one candidate model is correct, and
one candidate model is incorrect. The goal is to in-
vestigate the relationship between candidate model
task performance and judgment performance.

Setup. For all model pairs MA,MB ∈
M,MA ̸= MB we analyze subsets where MA is
correct, and MB is incorrect. Note that we can
always order MA and MB this way. Each plot in
Figure 5 shows the relationship between judge per-
formance, P (∆J = T |A = T,B = F ) (Y-axis)
and candidate model performance gap of MA and
MB , i.e., P (A = T |D)− P (B = T |D) (X-axis).
Examples of these subsets and their corresponding
performances are in Appendix C in Table 10.

Results. The analysis reveals a strong correlation
(Pearson’s r2 > 0.69) between candidate model
performance gap and judgment accuracy. If the
performance gap is negative, we consider subsets
where larger models are incorrect. Judges favor
answers from larger models even when they are
incorrect on these subsets. We hypothesize that
this bias arises because larger models exhibit a spe-
cific writing style, articulating their responses more
convincingly, thereby misleading the judges. This
finding aligns with previous research identifying
self-bias (Xu et al., 2024; Panickssery et al., 2024;
Liu et al., 2024). However, our results indicate that
this bias extends more broadly to the inherent qual-

(a) Performance on all comparisons.

(b) Performance on comparisons with one correct
and one incorrect answer.

Figure 6: Judge performance by agreement bucket. E.g.,
bucket S3 (X-axis) means that all eight models gave
together three different answers. Note that AQUA-RAT
is multiple-choice with maximally six answers.

ity of the underlying models on reasoning datasets.
However, this is not necessarily a critical issue in
practice, as the larger model tends to answer cor-
rectly more often (as indicated by the color of the
points in Figure 5.

5.2 Does judgment quality depend on models’
agreement?

We are interested in whether the level of agreement
among models, i.e., how many models give a differ-
ent answer for a sample, impacts the performance
on the respective subset.

Setup. We define disagreement buckets Sj ,
where each bucket contains instances for which
exactly 1 ≤ j ≤ 8 unique answers were given
across all models. Formally, we set

Sj =
⋃
D

{i ∈ D | |{MA(i) | MA ∈ M}| = j}

where MA(i) is the answer of model MA for in-
stance i. We analyze the results in two contexts: all
comparisons, including those where both answers
are correct or incorrect (cf. Figure 6(a)), and only
instances where exactly one answer is correct (cf.
Figure 6(b)). We average the performances of all



P (∆J = T | · · · · · · )

↓ Features \ Condition → A,B A ̸= B {T, F} = {A,B}

(1) P (J), P (A), P (B) 97.50 90.20 59.20

(2)
P (A = B),

76.00 54.90 49.90
P (J = A|A ̸= B)

Table 2: Coeffictions of Determination (R2, higher is
better) for linear regression using the different feature
sets as covariates (rows) and different target variables
defined by the condition (columns). All values are sig-
nificant (p < 0.001) as per an Overall-F-Test.

judges and all candidate pairs. Find per-judge plots
in Appendix C in Figure 10.

Results. Figure 6(a) shows that when all models
agree (bucket S1), the performance is nearly 100%,
indicating unanimous agreement usually means cor-
rectness. As disagreement increases, performance
expectedly decreases. Thus, model agreement is a
proxy for sample difficulty. In 6(b), where a cor-
rect and an incorrect answer exists, performance
remains relatively stable across disagreement buck-
ets for datasets with free-form answers, such as
GSM8K and MATH. However, for AQUA-RAT,
performance degrades as disagreement rises.

6 Prediction of Judgements

We investigate whether predicting the judgments’
outcomes is feasible. Firstly, we aim to predict
performance statistics. Secondly, we aim to predict
individual judgments.

6.1 Can we predict judgment performance?

On the subset where exactly one answer is correct,
we found a strong correlation between judgment
performance and candidate task performances.
This hints at regularities within the judging pro-
cess, thus we aim to predict judge performance
using model statistics.

Setup. We fit six different linear regression mod-
els using the judgment performances as the tar-
get variables Y , including all variations of judges,
model pairs MA,MB ∈ M, and datasets D. Re-
garding the covariates X in the model, we dis-
tinguish between two setups: In Case (1), we
solely use the task performances P (X|D), X ∈
{J,A,B} of judge and candidate models, to pre-
dict judgment performance. In Case (2), we uti-
lize statistics available without knowledge of the
ground truth. The features for this case are the prob-
ability of agreement between the candidate models

↓ Model \Judge → Qwen 2 72B Llama 3 70B Yi 1.5 34B Mixtral 8x7B

(1) TF-IDF + RF 60.78 61.37 60.77 58.69
(2) RoBERTa 68.14 66.49 67.03 63.91

Table 3: Accuracy of predicting LLM judges’ decisions
using Random Forest (RF) and RoBERTa classifiers.

P (A = B|D) and the probability of model MA

being chosen. Since we are not specifically inter-
ested in the individual features’ effects, but rather
in their ability to explain the variation of judgment
performance, we rely on the coefficient of determi-
nation, R2, for evaluation (Fahrmeir et al., 2013, ,
see Appendix E).

Results. The results are shown in Table 2 (ex-
cluding data sets from the probability formulas
for simplicity). We observe that the performance-
related features of the models can almost perfectly
explain the variation in final judgment performance
(R2 = 97.50%), also when conditioning only on
the subset of differing answers (R2 = 90.20%).
Logically, P (A) and P (B), i.e., P (A|D), P (B|D)
respectively, have significant3 explanatory power
for judgment performance, as they encompass all
correct answers. In Case (2), we still observe a rel-
atively high R2 value, indicating that the features
can explain 50% of the target’s variance.

6.2 Can we predict which individual
judgments?

We hypothesize that judgments are biased towards
larger or better models because they incorporate
linguistic cues or writing style into their judgments
rather than purely relying on reasoning assess-
ment. Therefore, we train a classifier to understand
whether we can predict individual judgments.

Setup. We separate all comparisons made per
judge into training, validation, and test splits and
train two classifiers. The test accuracy is reported
in Table 3. The first model utilizes TF-IDF vec-
torization. We create two independent vectorizers
for both answers. The resulting features are con-
catenated. A RandomForest classifier (Breiman,
2001) is then trained on these combined features.
The second model is a RoBERTa model (Liu et al.,
2020) trained on the full prompt presented to the
judge. Refer to Appendix D for the training details
of both models.

3We test statistical significance using an Overall-F-Test for
each fitted model. Further details are in Appendix E.



Swapped Masked
= ̸= Refused = ̸= Refused

Qwen2-72B 75.75 12.20 12.05 56.40 26.06 17.53
Llama-3-70B 78.81 13.72 7.47 63.44 29.22 7.33
Yi-1.5-34B 74.80 14.47 10.73 44.89 37.31 17.80
Mixtral-8x7B 71.19 20.69 8.12 60.34 29.26 10.40

Table 4: Analysis of judgments where results in candi-
date answers were either swapped or numbers masked.
We report how many judgments stay the same (=), dif-
ferent (̸=), or where judges refused to follow the output
format (Refused).

Results. The random forest model achieves an
accuracy of approximately 60%, demonstrating per-
formance above random chance. This suggests that
specific keywords or phrases influence judges. The
RoBERTa model surpassed this, reaching nearly
70% accuracy. Taken together, these results sug-
gest that judge decision-making is a multi-faceted
process. While specific linguistic cues appear to
hold influence, a substantial portion of the decision-
making process seems to be based on other contex-
tual factors or broader reasoning.

7 Perturbation of Results

We aim to gain a deeper understanding of the ex-
tent to which writing style affects the final judg-
ment. Therefore, we create an experiment perturb-
ing the candidate answers and examine whether
this changes the judgment.

Setup. We examine two perturbtations: Swap and
Mask. In the Swap experiment, we swap the final
answer from model MA with that of model MB ,
while keeping their CoT reasoning unchanged. In
the Mask experiment, we anonymize all numbers
in both the CoT reasoning and the final answer
by replacing them with “X”.4 Table 4 shows the
frequency with which the judge selects the same
answer (=), a different answer (̸=), or fails/refuses
to follow the output format and make a decision
(Refused). Refer to Appendix F for specific exam-
ples.

Results. We observe that the new judgments in
more than half the cases agree with the original
judgment. In the Swap experiment, they even agree
on average by 75% of the cases. We deduce that
the judge is largely unaffected by the artificially

4In preliminary runs, we observed that masking caused
significant confusion for the judge models. To address this,
we adapt the judgment prompt in this setting to include the
instruction: “Only analyze the reasoning! All numbers have
been replaced with ’X’ to help you focus on the reasoning.”

introduced noise and heavily bases its decision on
the writing style. Interestingly, in a substantial
amount of samples (up to 17%) the judge refuses
to make a judgment. On a positive note, manual
inspection revealed that the model often realizes
that the original answers were perturbed.

8 Discussion

Style and Quality. Our experiments suggest a
relation between judgment and candidate task per-
formance (cf. Section 5) and a relation between
judgment and writing style (cf. Sec. 6 and 7).
We hypothesize these two are interconnected and
facets of the same underlying bias. When mod-
els become better, e.g., by being trained on larger
amounts of data, their ability to write convincingly
increases. Conversely, when an LLM demonstrates
an increased ability to write convincingly, it likely
acquires a more nuanced grasp of what humans per-
ceive as compelling. This enhanced understanding
likely also extends to task performance.

Generalizability of approach. Our in-depth
analysis utilizes Formula (1) to segment judgment
data based on correctness criteria, allowing for tar-
geted investigation of specific subsets. This ap-
proach is generalizable and transferable to other
NLP tasks, such as summarization. By incorporat-
ing discrete signals such as text topics, a similar
derivation of the judgment probability is possible.

9 Conclusion

We conducted a thorough analysis of LLM judges
on mathematical reasoning tasks. We include a
detailed judgment performance evaluation of eight
models on three datasets. We find that larger mod-
els are generally better than smaller models and
that judges succeed in detecting the more capable
model. Our analysis reveals a strong correlation be-
tween judgment performance and task performance
of the models providing candidate answers which
shows that judges tend to choose larger or better
models. We hypothesize that LLM judges incor-
porate writing style into their judgments instead of
purely analyzing the reasoning. We provide two ex-
periments to provide evidence for this hypothesis.

Finally, we want to emphasize the importance of
impartiality and fairness in the role of LLM judges,
similar to human judges in the real world. Our
research introduces methods to quantify biases in
favor of larger or better models, thereby offering a
means to measure the reduction of such biases.



Limitations

Our analysis is primarily focused on mathemati-
cal reasoning datasets, which allows us to explore
judgments through the lens of correctness within
specific subsets. While this approach provides valu-
able insights, it limits the generalizability of our
findings to other tasks or domains. Based on the
fact that the investigated datasets are complex, in
the sense that they need multi-step reasoning to
be solved, and based on the fact that there is no
thorough investigation of LLM judges on mathe-
matical reasoning datasets yet, we think this work
is a valuable contribution.

In our experiments, we focus on testing a sin-
gle, specific prompt. It is common knowledge that
LLMs are highly sensitive to variations in prompt
phrasing, which can substantially influence their
performance. Nevertheless, it is impossible for us
to meet the computational demands necessary to
run our experiments with multiple prompts.

In this study, we intentionally concentrate on
open-weight models, motivated by our strong be-
lief in the principles of open science. Open-
weight models offer transparency and reproducibil-
ity, which are critical for advancing scientific under-
standing. However, we note that it is also interest-
ing to study closed models to understand potential
differences. Still, we are committed to research on
open-weight models because we believe it benefits
the community more.
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# questions
Avg. Avg.

# question characters # answer characters

AQUA-RAT 254 239.1 203.1
MATH 1516 216.5 643.9
GSM8K 1319 239.9 292.9

Table 5: An overview of dataset size and text length.

A Experimental Setup

We provide further details on the general setup de-
scribed in Section 3. Specifically, we include statis-
tics and examples of the datasets, additional infor-
mation on the models used, and the exact prompts
employed in this study.

A.1 Datasets

Additional information about the datasets is given
in Table 5, which presents an overview of the
dataset statistics. Note that for the MATH dataset,
we only include the most challenging questions,
called levels 4 and 5, in the dataset. Notably, it
has ground truth answer sequences that are, on
average, almost three times longer than those in
other datasets.

In Table 6, we provide examples of ques-
tions and their corresponding answers from the
ground truth. Note that these examples were used
for few-shot prompting.

A.2 Models

We execute all models using the VLLM software
for LLM serving (Kwon et al., 2023). The weights
for all models are accessible through Huggingface
Transformers (Wolf et al., 2020). Table 7 includes
hyperlinks to each model for easy reference.

A.3 Prompts

We used two different prompts within this project.
The prompt shown in Figure 7 is used for the can-
didate solutions for all datasets. Examples of the
few-shots are in Table 6. The prompt for the judges
is given in Figure 8. Note that we run experiments
for both orders of the answers of the models MA

and MB .

A.4 Infrastructure

The experiments were run on NVIDIA A100 and
NVIDIA H100. The judgments used in Section 4
and Section 5 took around 5 days equivalents on
4 A100 40GB. Using 2 H100 90GB and 4 A100
40GB it took around 2.5 days. For the perturbation

Initial Prompt

{
"role": "user",
"content": "You are a reasoning assistant.
Always answer exactly in the same format.
Use ’####’ to separate the final answer
(without additional comments) from the
reasoning.

{{shot 1 question}}"
},
{
"role": "assistant",
"content": "{{shot 1 question}}"
}
...
,
{
"role": "assistant",
"content": "{{shot 4 answer}}"
}, {
"role": "user",
"content": "{{question}}"
}
}

Figure 7: Prompt used to generate initial solutions for
all datasets. It includes few-shots and the question of
the current sample.



Question Answer

AQUA-RAT Two friends plan to walk along a 43-km
trail, starting at opposite ends of the trail
at the same time. If Friend P’s rate is
15% faster than Friend Q’s, how many
kilometers will Friend P have walked
when they pass each other? Options:
A)21 B)21.5 C)22 D)22.5 E)23

If Q complete x kilometers, then P com-
pletes 1.15x kilometers. x + 1.15x = 43
2.15x=43 x = 43/2.15 = 20 Then P will
have have walked 1.15*20=23 km. The
answer is E. #### E

GSM8K Natalia sold clips to 48 of her friends
in April, and then she sold half as many
clips in May. How many clips did Na-
talia sell altogether in April and May?

Natalia sold 48/2 = «48/2=24»24 clips
in May. Natalia sold 48+24 =
«48+24=72»72 clips altogether in April
and May. #### 72

MATH Mr. Madoff invests 1000 dollars in a
fund that compounds annually at a con-
stant interest rate. After three years, his
investment has grown to 1225 dollars.
What is the annual interest rate, as a
percentage? (Round your answer to the
nearest integer.)

Let r be the annual interest rate.
Then after three years, Mr. Mad-
off’s investment is 1000 ·

(
1 + r

100

)3,
so 1000 ·

(
1 + r

100

)3
= 1225. Then(

1 + r
100

)3
= 1.225,so [1 + r

100 =
3
√
1.225 = 1.069987 . . . , which means

r = 7 , to the nearest integer. #### 7.0

Table 6: Example of ground truth answers used for few-shot prompting.

Model URL

Qwen2 72B huggingface.co/Qwen/Qwen2-72B
Llama 3 70B huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
Yi 1.5 34B huggingface.co/01-ai/Yi-1.5-34B-Chat-16K
Mixtral 8x7B huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
Llama 3 8B huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Gemma 1.1 7B huggingface.co/google/gemma-1.1-7b-it
Mistral 7B v0.3 huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
Mistral 7B v0.1 huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

Table 7: Used models and corresponding hyperlinks.

experiments in Section 7, it took around the same
amount of time.

B General performance

This section provides additional information re-
lated to Section 4. Specifically, we present the task
performance of all models across all datasets, as
well as the judging performance of all models when
used as judges.

B.1 Task Performance
In various contexts in this work, the task perfor-
mance of the individual models is essential. There-
fore, we provide the accuracy of all models and all
datasets in Table 9.

B.2 Judging performance per model pair
We conduct experiments with all eight models serv-
ing as judges. We present the performance metrics

of all judges across various model comparisons
in Figure 9. As shown in Table 1, only the large
models consistently produce judgments that devi-
ate consistently from random chance. These results
in Figure 9 support the superior performance of
larger models.

C Additional subset experiments

This section provides additional information for
chapter 5.

C.1 Example Subset performance
To better understand the correlation observed in
Figure 5, we provide examples of these subsets,
which can be seen in Table 10. These examples
include the following details: the judge, the com-
pared models, the dataset, the performance of each
model on a dataset (denoted by P (A|D)), the
judgment performance on the subset (denoted by
P (∆J = T |A = X,B = Y,D)), and the relative
size of the subset (denoted by P (A = X,B =
Y |D)). We provide the five subsets with the high-
est performance, the five subsets with the five low-
est performance, and five random subsets.

C.2 Performance by agreement
We provide an extension of the results in the main
paper. We put all samples into bins of how many

https://huggingface.co/Qwen/Qwen2-72B
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/01-ai/Yi-1.5-34B-Chat-16K
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1


Judge model MA model MB Label Prompt Response Correct

Qwen 2 72B Qwen 2 72B Llama 3 8B 20.00 Question: Charlie wants to sell beeswax candles. For
every pound of beeswax, he can make 10 tapered
candles. One pound of beeswax and the wicks cost
$10.00 in supplies. If he sells each candle for $2.00
each, what is his net profit if he makes and sells 20
candles?
Answer A: He needs 2 pounds of beeswax to make
20 candles because 20 / 10 = «20/10=2»2 It will
cost $20.00 in supplies for the beeswax and wicks
because 2 x 10 = «2*10=20»20 His total revenue
from selling the candles will be $40.00 because 20
x 2 = «20*2=40»40 His net profit will be $20.00
because 40 - 20 = «40-20=20»20 #### 20
————–
Answer B: It takes 1 pound of beeswax and the wicks
to make 10 candles, so it takes 1 pound of beeswax
and the wicks to make 20 candles. It costs 10 dollars
for 1 pound of beeswax and the wicks, so it costs 10
dollars for 20 candles. Charlie sells each candle for 2
dollars, so he makes 20 * 2 = 40 dollars by selling the
20 candles. So, his net profit is 40 - 10 = 30 dollars.
#### 30
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Answer A and Answer B differ in their calculation of
the cost of supplies for making 20 candles. Answer
A correctly calculates that Charlie needs 2 pounds
of beeswax to make 20 candles and that the cost for
the beeswax and wicks for 2 pounds is $20.00. An-
swer B incorrectly assumes that the cost for making
20 candles is the same as for 10 candles, which is
$10.00. Therefore, Answer A correctly calculates
the net profit as $20.00, while Answer B incorrectly
calculates it as $30.00.
The correct answer is A.
“‘json
{
"answer": "A"
}
“‘

True

Llama 3 70B Qwen 2 72B Llama 3 8B D Question: There is well of depth 30m and frog is at
bottom of the well. He jumps 3m up one day and falls
back 2m down the same day. How many days will it
take for the frog to come out of the well? Options:
A)25 days
B)26 days
C)27 days
D)28 days
E)29 days
Answer A: The frog is initially at the bottom of the
well, which is 30m deep.
On the first day, the frog jumps 3m up, so it is 33m
from the bottom. Then, it falls back 2m, so it is 31m
from the bottom.
Each day, the frog jumps 3m up and falls 2m down,
making a net gain of 1m. To get out of the 30m deep
well, it would take 30 days for the frog to jump and
fall 30 times, covering a total distance of 30m.
#### A
————–
Answer B: If he jumps 3m up and slips 2m down in
a day, he is 1m up in a day in 27 days he would have
reached 27m On the 28th day, he jumps up 3m and
come out of the well. Answer: D #### D
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Let’s break down both answers:
**Answer A:** The explanation is correct that the
frog makes a net gain of 1m each day. However, the
conclusion that it would take 30 days to get out of the
30m deep well is incorrect. The frog would reach the
top of the well when it has covered a total distance
of 30m, but it would not take 30 days.
**Answer B:** This explanation is correct. The frog
makes a net gain of 1m each day, so in 27 days, it
would have covered 27m. On the 28th day, it would
jump up 3m and come out of the well.
Therefore, the correct answer is **D) 28 days**.
Here is the conclusion in JSON format:
“‘json
{
"answer": "B"
}
“‘

True

Table 8: Example of ground truth answers used for few-shot prompting.



Judge Prompt

Question:
{{question}}

Answer A:
{{answer A}}
————–
Answer B:
{{answer B}}
————–

Compare both answers in detail and
choose the answer which correctly answers
the question.

Conclude with a JSON in Markdown
format indicating your choice between
answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Figure 8: Prompt used for judgements. The full text
above is wrapped in the user role, as all models support
this role. No additional system message is used.

AQUA-RAT GSM8K MATH

Qwen 2 72B 76.38 92.04 51.19
Llama 3 70B 73.62 91.05 34.37
Yi 1.5 34B 64.96 78.47 27.04
Mixtral 8x7B 47.24 61.18 13.79
Llama 3 8B 51.18 73.01 15.04
Gemma 1.1 7B 42.91 50.72 12.60
Mistral 7B v0.3 38.19 42.76 6.13
Mistral 7B v0.1 21.65 26.08 3.10

Table 9: Task performance of all models using the
prompt in Figure 7.

different answers were given by the eight mod-
els. For the sake of brevity, we average across all
judges. In Figure 10 we show the same graphs
for each judge individually. Again, we give the
performance on the overall dataset and on the sub-
set where there exists exactly one correct and one
incorrect solution. All interpretations and conclu-
sions overlap with the main part of the paper.

D Prediction of Individual Judgements

Random Forest. We utilize TF-IDF representa-
tions with English stop word removal for the Ran-
dom Forest model. We further remove all digits
from the text. We set the maximum number of fea-
tures to 10,000 and consider n-grams ranging from
unigrams to bigrams (N-gram range: 1-2). The
model uses 500 trees (estimators). For training, we
use the Scikit-learn (Pedregosa et al., 2011) library.
The running time was negligible.

RoBERTa. For the RoBERTa model (Liu et al.,
2020), we use a batch size of 64 and a learning rate
of 2e-5. The weight decay is set to 1e-3, and the
model is trained for 8 epochs. The final model is
selected based on the best validation performance.
The model is trained using the HuggingFace Trans-
formers library (Wolf et al., 2020). The total run-
ning time was about twelve hours on a single H100
90GB.

E Statistical Methodology

We describe the statistical background for the tests
applied in Section 6. All predictions and statis-
tical tests in Section 6 were performed using the
statsmodels library (Seabold and Perktold, 2010).

E.1 Coefficient of Determination

The coefficient of determination, R2, for evaluation
of linear regression models (Fahrmeir et al., 2013)
is defined as follows:

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

R2 measures the share of the variance in Y ex-
plained by its covariation with the features X in-
cluded in the model by dividing the variation of
the predicted values ŷi by the variation of the true
target values yi. If the features X have high ex-
planatory power for Y , the ŷi will be close to
the yi and R2 will be close to 1, while in the
extreme case of no correlation between X and



(a) Qwen 2 70B (b) LLama3 70B (c) LLama 3 8B (d) Gemma 1.1 7B

(e) Yi 1.5 34B (f) Mixtral 8x7B (g) Mistral 7B v0.3 (h) Mistral 7B v0.1

Figure 9: Evaluation of final task performance P (∆J = T |A,B) averaged over all datasets for model pairs
(MA,MB) for the judges (a) - (h).

Judge model A model B dataset X Y P (A|D) P (B|D) P (∆J = T |A = X,B = Y,D) P (A = X,B = Y |D)

Qwen 2 72B Qwen 2 72B Mistral 7B v0.1 MATH True False 51.2 3.1 99.1 50.2
Qwen 2 72B Yi 1.5 34B Mistral 7B v0.1 MATH True False 27.0 3.1 98.4 27.9
Qwen 2 72B Llama 3 8B Mistral 7B v0.1 MATH True False 15.0 3.1 98.3 16.7
Qwen 2 72B Llama 3 70B Mistral 7B v0.1 MATH True False 34.4 3.1 98.3 35.4
Qwen 2 72B Mixtral 8x7B Mistral 7B v0.1 MATH True False 13.8 3.1 98.2 15.4
Mixtral 8x7B Mixtral 8x7B Mixtral 8x7B GSM8K False True 61.2 61.2 65.8 14.7
Yi 1.5 34B Llama 3 8B Gemma 1.1 7B GSM8K False True 73.0 50.7 64.9 8.0
Yi 1.5 34B Llama 3 70B Mistral 7B v0.1 AQUA-RAT True False 73.6 21.7 89.1 60.8
Qwen 2 72B Gemma 1.1 7B Gemma 1.1 7B GSM8K False True 50.7 50.7 90.0 12.9
Yi 1.5 34B Yi 1.5 34B Mistral 7B v0.1 GSM8K False True 78.5 26.1 52.5 2.6
Qwen 2 72B Llama 3 70B Mistral 7B v0.1 MATH False True 34.4 3.1 13.2 2.2
Qwen 2 72B Yi 1.5 34B Mistral 7B v0.1 AQUA-RAT False True 65.0 21.7 10.0 4.7
Yi 1.5 34B Qwen 2 72B Mistral 7B v0.1 MATH False True 51.2 3.1 6.5 1.4
Llama 3 70B Qwen 2 72B Mistral 7B v0.1 MATH False True 51.2 3.1 6.2 1.3
Qwen 2 72B Qwen 2 72B Mistral 7B v0.1 MATH False True 51.2 3.1 6.1 1.4

Table 10: Examples of comparisons; and performance; problem:



(a) Qwen 2 72B: Using all comparisons. (b) Comparison with a correct and incorrect answer

(c) Llama 3 70B: Using all comparisons. (d) Comparison with a correct and incorrect answer

(e) Yi 1.5 34B: Using all comparisons. (f) Comparison with a correct and incorrect answer

(g) Mixtral 8x7B: Using all comparisons. (h) Comparison with a correct and incorrect answer

Figure 10: Judge performance by agreement bucket, e.g. bucket 3 (X-axis) means that all eight models gave together
three different answers.



Y the arithmetic mean is the best estimate (i.e.,
ŷi = ȳ ∀ i = 1, . . . , n) resulting in R2 = 0.

E.2 Overall-F-Test
The Overall-F-Test is built upon R2 and tests
whether the overall model is of any significant
value for explaining the variation of the target vari-
able. The F-distributed test statistic is calculated
as

R2

1−R2
· n− p− 1

p
,

where R2 is the coefficient of determination, n is
the number of observations, and p is the number of
covariates included in the model (i.e., the number
of estimated coefficients excluding the intercept).
The hypotheses that can be tested this way are

H0 : β1 = β2 = · · · = βp = 0

vs.

H1 : βj ̸= 0 for at least one j ∈ {1, . . . , p}.

So from a rejection of H0, it can be concluded
that at least one of the included features exhibits
explanatory power for the variation of the target
variable.

E.3 Multiple Testing
Since we conduct multiple statistical tests within
the scope of one research project, it is important
to consider multiple testing as a potential problem
resulting in false positive findings. The p-values
from our tests, however, also satisfy a significance
level resulting from a Bonferroni Correction of the
typical significance level of 5%.

F Peturbation of Results

In Section 7 we performed two experiments, where
we 1) swap the results of the individual answers
and 2) mask all numbers using an ’X’ to understand
whether the model only focuses on the writing style.
You can find examples, including the prompt and
the response of the judge for experiment 1) in Table
11 and examples for experiment 2) in Table 12



Judge model MA model MB Label Prompt Response Correct

Qwen 2 72B Qwen 2 72B Llama 3 8B 163.00 Question: Candice put 80 post-it notes in her purse
before she headed out to her job at the coffee shop.
On her way, she stopped off at the store and pur-
chased a package of Post-it notes; At work, she
placed a single Post-it note on each of 220 different
cups of coffee. If she had 23 post-it notes remaining
overall, how many Post-it notes were in the package
that she purchased?
Answer A: Candice had 80 post-it notes initially.
She used 80 + 220 = «80+220=300»300 of them
to note the cups of coffee. She had 23 post-it notes
remaining overall. So, she used 300 - 23 = «300-
23=277»277 of the 300 post-it notes initially. The
remaining post-it notes are the difference between
the total and the initial count, which is 300 - 80 =
«300-80=220»220. She must have purchased 220 - 23
= «220-23=163»197 post-it notes. #### 163
————–
Answer B: Candice started with 80 Post-it notes and
placed one on each of the 220 cups of coffee, so she
used 220 notes. If she had 23 notes remaining, then
she must have had 220 + 23 = 243 notes in total.
Since she originally had 80 notes, the package she
purchased must have contained 243 - 80 = 197 notes.
Therefore, the package contained 197 Post-it notes.
#### 197
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Answer A is incorrect because it incorrectly calcu-
lates the number of post-it notes Candice used and
purchased. The correct answer is B because it ac-
curately calculates the total number of post-it notes
Candice had after using them and then subtracts the
initial number of post-it notes she had to find out how
many were in the package she purchased.
“‘json
{
"answer": "B"
}
“‘

True

Llama 3 70B Qwen 2 72B Llama 3 8B D Question: In a chocolate store, all chocolates are
either vanilla or cocoa flavored only. 10% of the
chocolates are cocoa flavored, 90% of the rest are
squashed. What percentage of the chocolates are both
vanilla flavored and not squashed? Options: A)1%
B)2%
C)5%
D)9%
E)10%
Answer A: If 10% of the chocolates are cocoa fla-
vored, then the remaining 90% are vanilla flavored.
90% of the vanilla chocolates are squashed. This
means that 10% of the vanilla chocolates are not
squashed. The question asks for the percentage of
chocolates that are both vanilla flavored and not
squashed. Since 10% of the vanilla chocolates are
not squashed, the answer is 10%.
#### D
————–
Answer B: 90% of the chocolates are not cocoa fla-
vored (they are vanilla) and 10% of these (90% *10%
= 9%) are not squashed. So 9% of the chocolates are
both vanilla flavored and not squashed. The answer
is E. #### E
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Let’s break down both answers:
**Answer A:** If 10% of the chocolates are co-
coa flavored, then the remaining 90% are vanilla
flavored. 90% of the vanilla chocolates are squashed.
This means that 10% of the vanilla chocolates are
not squashed. The question asks for the percentage
of chocolates that are both vanilla flavored and not
squashed. Since 10% of the vanilla chocolates are
not squashed, the answer is 10%.
**Issue with Answer A:** The calculation "10% of
the vanilla chocolates are not squashed" is incorrect.
90% of the vanilla chocolates are squashed, which
means 10% of 90% (not 10% of the total) are not
squashed.
**Answer B:** 90% of the chocolates are not cocoa
flavored (they are vanilla) and 10% of these (90% *
10% = 9%) are not squashed. So 9% of the chocolates
are both vanilla flavored and not squashed.
**Correctness of Answer B:** This answer correctly
calculates the percentage of chocolates that are both
vanilla flavored and not squashed.
Therefore, the correct answer is **B**.
Here is the conclusion in JSON format: “‘json
{
"answer": "B"
}
“‘

True

Table 11: Examples of comparisons where the final results were swapped.



Judge model MA model MB Label Prompt Response Correct

Qwen 2 72B Qwen 2 72B Llama 3 8B 163.00 Question: Candice put 80 post-it notes in her purse
before she headed out to her job at the coffee shop.
On her way, she stopped off at the store and pur-
chased a package of Post-it notes; At work, she
placed a single Post-it note on each of 220 different
cups of coffee. If she had 23 post-it notes remaining
overall, how many Post-it notes were in the package
that she purchased?
Answer A: Candice had X post-it notes initially. She
used X + X = «X+X=X»X of them to note the cups
of coffee. She had X post-it notes remaining overall.
So, she used X - X = «X-X=X»X of the X post-it
notes initially. The remaining post-it notes are the dif-
ference between the total and the initial count, which
is X - X = «X-X=X»X. She must have purchased X -
X = «X-X=X»X post-it notes. #### X
————–
Answer B: Candice started with X Post-it notes and
placed one on each of the X cups of coffee, so she
used X notes. If she had X notes remaining, then she
must have had X + X = X notes in total. Since she
originally had X notes, the package she purchased
must have contained X - X = X notes. Therefore, the
package contained X Post-it notes. #### X
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question. Only
analyze the reasoning! Therefore we exchanged all
numbers with ’X’ so you can focus on the reasoning.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Answer A’s reasoning is flawed because it uses the
variable X in a confusing and incorrect way, equating
X to X-X, which results in 0, and does not make
sense in the context of the problem. Answer B, while
also using X in a confusing way, at least attempts
to set up an equation that could lead to a solution if
the Xs were replaced with actual numbers. However,
neither answer provides a clear, correct solution to
the problem as stated.
A correct approach would be to set up an equation
based on the information given. Candice started with
80 post-it notes, used some, bought more, and ended
up with 23 post-it notes. She used 220 post-it notes
at work. Let’s denote the number of post-it notes in
the package she bought as Y.
The equation based on the information given would
be: Initial post-it notes + Post-it notes bought −
Post-it notes used = Post-it notes remaining

80 + Y − 220 = 23

Solving for Y would give us the number of post-it
notes in the package she bought.
Since neither answer A nor B provides a correct solu-
tion, and given the instruction to choose between A
or B, we must conclude that neither is correct. How-
ever, since a choice must be made between A and B,
and B at least attempts to set up an equation, albeit
incorrectly, we will choose B as the less incorrect
option.
“‘json
{
"answer": "B"
}
“‘

True

Llama 3 70B Qwen 2 72B Llama 3 8B D Question: There is well of depth 30m and frog is at
bottom of the well. He jumps 3m up one day and falls
back 2m down the same day. How many days will it
take for the frog to come out of the well? Options:
A)25 days
B)26 days
C)27 days
D)28 days
E)29 days
Answer A: The frog is initially at the bottom of the
well, which is Xm deep.
On the first day, the frog jumps Xm up, so it is Xm
from the bottom. Then, it falls back Xm, so it is Xm
from the bottom.
Each day, the frog jumps Xm up and falls Xm down,
making a net gain of Xm. To get out of the Xm deep
well, it would take X days for the frog to jump and
fall X times, covering a total distance of Xm.
#### A
————–
Answer B: If he jumps Xm up and slips Xm down in
a day, he is Xm up in a day in X days he would have
reached Xm On the Xth day, he jumps up Xm and
come out of the well. Answer: D #### D
————–
Compare both answers in detail and choose the an-
swer which correctly answers the question. Only
analyze the reasoning! Therefore we exchanged all
numbers with ’X’ so you can focus on the reasoning.
Conclude with a JSON in Markdown format indicat-
ing your choice between answer A or B:
“‘json
{
"answer": "B" or "A"
}
“‘

Let’s analyze the reasoning of both answers:
**Answer A:** The answer assumes that the frog
makes a net gain of Xm (3m - 2m = 1m) each day.
However, it doesn’t consider the fact that the frog
needs to reach the top of the well to come out. The
answer simply states that it would take X days to
cover a total distance of Xm, without considering the
remaining distance to the top of the well.
**Answer B:** The answer correctly assumes that
the frog makes a net gain of Xm (3m - 2m = 1m)
each day. It then concludes that in X days, the frog
would have reached Xm, and on the Xth day, it would
jump up Xm and come out of the well. This answer
considers the remaining distance to the top of the well
and correctly concludes that the frog would come out
on the Xth day.
Based on the analysis, I choose:
“‘json
{
"answer": "B"
}
“‘

True

Table 12: Example of comparisons where numbers were masked using an ’X’.


